Energy News  
BIO FUEL
A High-Yield Biomass Alternative To Petroleum For Industrial Chemicals

A team of University of Massachusetts Amherst chemical engineers have developed a way to produce high-volume chemical feedstocks including benzene, toluene, xylenes and olefins from pyrolytic bio-oils, the cheapest liquid fuels available today derived from biomass. The new process could reduce or eliminate industry's reliance on fossil fuels to make industrial chemicals worth an estimated $400 billion annually. Credit: Phil Badger, Renewable Oil Internatiional
by Staff Writers
Amherst MA (SPX) Nov 29, 2010
A team of University of Massachusetts Amherst chemical engineers report in Science that they have developed a way to produce high-volume chemical feedstocks including benzene, toluene, xylenes and olefins from pyrolytic bio-oils, the cheapest liquid fuels available today derived from biomass. The new process could reduce or eliminate industry's reliance on fossil fuels to make industrial chemicals worth an estimated $400 billion annually.

Instead of buying petroleum by the barrel, chemical manufacturers will now be able to use relatively cheaper, widely available pyrolysis oils made from waste wood, agricultural waste and non-food energy crops to produce the same high-value materials for making everything from solvents and detergents to plastics and fibers.

As principal investigator George Huber, associate professor of chemical engineering at UMass Amherst, explains, "Thanks to this breakthrough, we can meet the need to make commodity chemical feedstocks entirely through processing pyrolysis oils. We are making the same molecules from biomass that are currently being produced from petroleum, with no infrastructure changes required."

He adds, "We think this technology will provide a big boost to the economy because pyrolysis oils are commercially available now. The major difference between our approach and the current method is the feedstock; our process uses a renewable feedstock, that is, plant biomass.

"Rather than purchasing petroleum to make these chemicals, we use pyrolysis oils made from non-food agricultural crops and woody biomass grown domestically. This will also provide United States farmers and landowners a large additional revenue stream."

In the past, these compounds were made in a low-yield process, the chemical engineer adds. "But here we show how to achieve three times higher yields of chemicals from pyrolysis oil than ever achieved before. We've essentially provided a roadmap for converting low-value pyrolysis oils into products with a higher value than transportation fuels."

In the paper, he and doctoral students Tushar Vispute, Aimaro Sanno and Huiyan Zhang show how to make olefins such as ethylene and propylene, the building blocks of many plastics and resins, plus aromatics such as benzene, toluene and xylenes found in dyes, plastics and polyurethane, from biomass-based pyrolysis oils.

They use a two-step, integrated catalytic approach starting with a "tunable," variable-reaction hydrogenation stage followed by a second, zeolite catalytic step. The zeolite catalyst has the proper pore structure and active sites to convert biomass-based molecules into aromatic hydrocarbons and olefins.

Huber, Vispute and colleagues discuss how to choose among three options including low- and high-temperature hydrogenation steps as well as the zeolite conversion for optimal results. Their findings indicate that "the olefin-to-aromatic ratio and the types of olefins and aromatics produced can be adjusted according to market demand."

That is, using the new techniques, chemical producers can manage the carbon content from biomass they need, as well as hydrogen amounts. Huber and colleagues provide economic calculations for determining the optimal mix of hydrogen and pyrolytic oils, depending on market prices, to yield the highest-grade product at the lowest cost.

A pilot plant on the UMass Amherst campus is now producing these chemicals on a liter-quantity scale using this new method. The technology has been licensed to Anellotech Corp., co-founded by Huber and David Sudolsky of New York City. Anellotech is also developing UMass Amherst technology invented by the Huber research team to convert solid biomass directly into chemicals. Thus, pyrolysis oil represents a second renewable feedstock for Anellotech.

Sudolsky, Anellotech's CEO, says, "There are several companies developing technology to produce pyrolysis oil from biomass. The problem has been that pyrolysis oils must be upgraded to be useable. But with the new UMass Amherst process, Anellotech can now convert these pyrolysis oils into valuable chemicals at higher efficiency and with very attractive economics. This is very exciting."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Massachusetts at Amherst
Bio Fuel Technology and Application News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


BIO FUEL
Rentech's Synthetic RenDiesel Fuels Audi A3 TDI
Los Angeles CA (SPX) Nov 22, 2010
Rentech has announced that its synthetic RenDiesel fuel will power an Audi A3 TDI during the Green Cars LA Auto Show Ride and Drive event, hosted by Green Car Journal. During the event, credentialed journalists will experience the performance of synthetic RenDiesel fuel in Green Car Journal's 2010 Green Car of the Year, an honor awarded to the Audi A3 TDI at last year's LA Auto Show. Last ... read more







BIO FUEL
Solis Partners Awarded Solar Contract For New Vertical Screen HQ

Funding To Help Solve Solar Energy Puzzle

Fast Food Goes Green

Minneapolis Convention Center Solar Array Completed Ahead Of Schedule

BIO FUEL
BIO FUEL
Vestas Selects Broadwind Towers For Glacier Hills Wind Project

Optimizing Large Wind Farms

Enhancing The Efficiency Of Wind Turbines

GL Garrad Hassan Chosen For SMart Wind's 'Hornsea' Zone

BIO FUEL
Chinese boats near disputed islands: Japan coastguard

BP sells stake in Pan American Energy to Bridas

BP sells another $7 billion in assets

Oil-rich south Sudan must weigh progress versus environment

BIO FUEL
Developing Countries Can Cut Greenhouse Gas Emissions And Help The Poor

Geothermal Energy Association Weaves The Geothermal Web

What Is EU's Strategy For Securing Energy Supply For The Future

LockMart Continues Ocean Thermal Energy Conversion

BIO FUEL
In-car technology called dangerous

Copenhagen plans super highways ... for bikes

World Debut Of Honda Fit EV Concept Electric Vehicle

Daewoo, Doosan in Indonesian vehicle deal

BIO FUEL
Argentina to export corn to drought-hit Russia

U.K.: Food from cloned animals safe

Shrubby Crops Can Help Fuel Africa's Green Revolution

Mildew-Resistant And Infertile

BIO FUEL
US cable TV bleeds subscribers as online grows

Thales announces venture for Chinese in-flight systems

Radar guns might spot suicide bombers

Savory Sea Salt Sensor To Get Cooked And Chilled


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement