A more energy-efficient catalytic process to produce olefins by Staff Writers Pittsburgh PA (SPX) May 31, 2017
Research at the University of Pittsburgh into a more energy-efficient catalytic process to produce olefins, the building blocks for polymer production, was recently featured on the inside front cover of the Royal Society of Chemistry journal, Catalysis Science and Technology (May 21, 2017, Issue 10). The team's investigations could influence potential applications in diverse technology areas from green energy and sustainable chemistry to materials engineering and catalysis. "Carboranes: the strongest Bronsted acids in alcohol dehydration" (DOI: 10.1039/C7CY00458C) was authored by Giannis Mpourmpakis, assistant professor of chemical and petroleum engineering. PhD candidate Pavlo Kostetskyy and undergraduate student Nicholas A. Zervoudis, part of Mpourmpakis' Computer-Aided Nano and Energy Lab (C.A.N.E.LA.), are co-authors. Pitt's Center for Simulation and Modeling provided computational support. "Carboranes are one of the strongest known acids, but little is known about how these molecular catalysts can dehydrate biomass-derived alcohols," Dr. Mpourmpakis explained. "Our computational research not only detailed the mechanism under which alcohols dehydrate on these catalysts, but most importantly we developed linear relationships between the energy input needed to observe dehydration of alcohols and the alcohol characteristics." According to the paper, "these obtained relationships are especially relevant to the field of solid acid catalysis, a widely studied area with a vast range of industrial applications, including the formation of olefins (polymer building blocks) from biomass-derived alcohols as well as fuels and chemicals from sugars and polyols." The group's research focused on primary, secondary and tertiary alcohols, and revealed the slope of linear relationships depending on the reaction mechanism. "This research is important because now experimentalists have a way to identify the reaction followed when different alcohols dehydrate," Mpourmpakis said. "Because this process involves biomass-based production of polymers, we can potentially create a more sustainable and energy-efficient process."
Daegu, South Korea (SPX) May 30, 2017 DGIST's joint research team has developed a new titania photocatalyst that converts carbon dioxide into methane three times more efficiently than the existing photocatalyst by manipulating its surface. Carbon dioxide is a major cause of global warming. Therefore, in order to control atmostpheric carbon dioxide concentration, many countries are actively working on numerous studies to invest ... read more Related Links University of Pittsburgh Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |