Energy News  
BIO FUEL
A new strategy for efficient hydrogen production
by Staff Writers
Ulsan, South Korea (SPX) Jan 02, 2018


The economic impact of SOEC, developed by Professor Guntae Kim in September, 2016. and a schematic diagrams of the working principle.

A joint research team, affiliated with UNIST has introduced the Hybrid-Solid Electrolysis Cell (Hybrid-SOEC) system with highest reported electrochemical performance in hydrogen production. The proposed system has attracted much attention as a new promising option for the cost-effective and highly-efficient hydrogen production, as it shows excellent performance compared with other water-electrolysis systems.

This breakthrough has been led by Professor Guntae Kim in the School of Energy and Chemical Engineering at UNIST in collaboration with Professor Tak-Hyoung Lim of Korea Institute of Energy Research (KIER) and Professor Jeeyoung Shin of Sookmyung Women's University.

A solid oxide electrolyzer cell (SOEC) consists of two electrodes and an electrolyte that are all in solid-state. They are strongly desired as novel candidates for the hydrogen production, as they require no need to replenish lost electrolytes, while eliminating the corrosion problems. Besides, SOECs also operate at relatively high temperatures (700-1000 C), which helps to offer reduced electrical energy consumption.

Professor Kim and his research team have been seeking ways to improve energy efficiency of hydrogen production, using SOEC. In the study, the research team has demonstrated the novel concept of Hybrid-SOEC based on the mixed ionic conducting electrolyte, allowing water electrolysis to be occurred at both hydrogen and air electrodes.

The existing SOEC electrolytes allows the transport of either only one of the hydrogen or oxygen ions to the other electrode. For the cases like the SOEC electrolytes that transport oxygen ions, water electrolysis occurs at the anode and this results in the production of hydrogen.

In contrast, the SOEC electrolytes that transport hydrogen ions cause water electrolysis to occur at the cathode and this results in the production of oxygen. Here, hydrogen travels through the electrolyte to the anode.

Theoretically, using electrolytes that transport both hydrogen and oxygen ions, allows the production of two electrolysis products, hydrogen and oxygen, on both sides of the cell. This could improve hydrogen production rate greatly. In the study, the research team paid attention to the control of properties of electrolytes.

In this study, Professor Kim and his research team reported their new findings in exploring a SOEC based on a mixed-ion conductor that can transport both oxygen ion and proton at the same time, which is denoted as Hybrid-SOEC.

In comparison to other SOECs and representative water-electrolysis devices reported in the literatures, the proposed system demands less electricity for hydrogen production, while exhibiting outstanding electrochemical performance with stability. Moreover, the Hybrid SOEC exhibits no observable degradation in performance for more than 60 hours of continuous operation, implying a robust system for hydrogen production.

"By controlling the driving environment of the hydrogen ion conductive electrolyte, a 'mixed ion conductive electrolyte' in which two ions pass can be realized," says Junyoung Kim in the doctoral program of Energy and Chemical Engineering, the first author of the study.

"In Hybrid-SOEC where this electrolyte was first introduced, water electrolysis occurred at both electrodes, which results in significant increase in total hydrogen production."

The layered perovskite with excellent electrochemical properties was used as the electrode of Hybrid-SOEC. By adding an excellent electrode material on mixed ionic conducting electrolyte, resulting in enhanced electrochemical performance.

As a result, the corresponding yields of hydrogen produced were 1.9 L per hour at a cell voltage of 1.5 V at 700 C. This is four times higher hydrogen production efficiency than the existing high-efficient water electrolytic cells.

Junyoung Kim et al., "Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production," (2017), Nano Energy.

BIO FUEL
Microbes help turn Greek yogurt waste into fuel
Washington DC (SPX) Dec 19, 2017
Consumers across the world enjoy Greek yogurt for its taste, texture, and protein-packed punch. Reaching that perfect formula, however, generates large volumes of food waste in the form of liquid whey. Now researchers in the United States and Germany have found a way to use bacteria to turn the leftover sugars and acids from Greek yogurt into molecules that could be used in biofuels or safe feed ... read more

Related Links
Ulsan National Institute of Science and Technology
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Climate conditions affect solar cell performance more than expected

Researcher pioneers solar sintering for crucial steel component

Columbia engineers develop floating solar fuels rig for seawater electrolysis

French company ENGIE lays out 5.2 GW renewable goal

BIO FUEL
British trade group weighs domestic shale against Russian LNG

Oil prices up slightly as U.S. drillers pause new rigs

Bahrain sentences six to death for 'assassination plot'

No certification needed for offshore drilling safety, U.S. proposes

BIO FUEL
Space Climate Observatory agreed ahead of One Planet Summit in Paris

BHP defends climate positions and Paris support

UCI scientists unveil new satellite-based global drought severity index

'We're losing the battle', Macron tells Paris climate talks

BIO FUEL
Sandia researchers make solid ground toward better lithium-ion battery interfaces

New test procedure for developing quick-charging lithium-ion batteries

AI helps accelerate progress toward efficient fusion reactions

Lasers could soon trigger fusion energy, researchers predict

BIO FUEL
NREL develops novel method to produce renewable acrylonitrile

Microbes help turn Greek yogurt waste into fuel

Bristol scientists turn beer into fuel

NREL research finds a sweet spot for engineering better cellulose-degrading enzymes

BIO FUEL
China's Geely takes 2.7-bn euro stake in Swedish truckmaker Volvo

New catalyst meets challenge of cleaning exhaust from modern engines

VW sacks executive jailed over 'dieselgate': report

Baidu accuses former exec of stealing self-driving car technology

BIO FUEL
Florida orange industry hit by hurricane, disease

Heat patterns help bees pick which flowers to pollinate

Oil palm plantations threaten protected Malaysian forests in unexpected ways

Pesticides, poor nutrition deadly one-two combo for honey bees

BIO FUEL
Water without windows: Capturing water vapor inside an electron microscope

Two holograms in one surface

Hot vibrating gases under the electron spotlight

3-D nanoscale imaging made possible









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.