Argonne researchers study how reflectivity of biofuel crops impacts climate by Staff Writers Lemont, IL (SPX) Nov 22, 2016
Researchers at the U.S. Department of Energy's (DOE's) Argonne National Laboratory have conducted a detailed study of the reflectivity effects of converting land to grow biofuel crops. Their study is part of an overall analysis of greenhouse gas emissions from land use change: instances where land that was previously forests, grasslands or pastureland is converted to producing biofuel crops. Historically, these types of analyses considered only changes in the amount of carbon stored in the soil and vegetation of these lands. The new analysis, published in The Royal Chemistry Society's Energy and Environmental Science, incorporates the additional effect of changes in reflectivity, or "albedo." Albedo effects sum up the amount of incoming solar energy that gets reflected back into space; these changes, along with numerous other factors, in turn contribute to changes in greenhouse gas emissions. While there is much data variability, the findings reveal that when a piece of land is changed to produce a biofuel crop, albedo effects also changed. When only albedo change effects are considered, researchers found that land converted to producing corn ethanol had a net cooling effect on climate. By comparison, land that was converted to producing miscanthus and switchgrass, two other plant sources for next-generation biofuels, had a net warming effect. But when carbon stock changes, another key effect of land use change, are also taken into account, corn and switchgrass ethanol exhibit net warming effects associated with land use change whereas miscanthus grass ethanol exhibits a net cooling effect. Led by researchers in Argonne's Energy Systems and Environmental Sciences Divisions, the work outlines the importance of considering changes in reflectivity when assessing land use change-induced effects of biofuel production on climate. "Our analysis is helping build a fuller picture of the climate effects of biofuel feedstock production," said Hao Cai, an Argonne environmental analyst and lead author of the study. Cai and his team began their research by first collecting data on land cover and albedo gathered from the U.S. Department of Agriculture and NASA satellites, respectively. They mapped the albedo data associated with specific land types--say, corn cropland or prairie. Then they ran simulations where they converted different land types to produce corn, miscanthus and switchgrass, and looked to see what would happen to albedo and to the net cooling or warming of the atmosphere as a result. Unlike past studies of albedo effects of land use change, which analyzed no more than 20 sites of specific land types, the team investigated millions of sites in more than a thousand counties in the U.S., covering 70 percent of the nation's corn production fields. "Another factor that sets this study apart is the specific modeling approach used to simulate albedo effect on a finer scale and provide more robust data analysis," said Yan Feng, an atmospheric and climate scientist involved in the study. The model allowed Feng and fellow researchers to examine the albedo dynamics of millions of parcels of land individually in squares just 500 meters at a side (5382 feet). By analyzing a large number of sites in detail, the researchers were able to take into account site-specific variations to better represent albedo effects in their analysis. Albedo effects varied among corn, miscanthus and switchgrass crops in part due to differences in their size and shape, as well as growth and environmental factors - all of which can vary dramatically from one site to the next. Albedo also varied considerably based on the type of land that was converted. For example, forest had the lowest albedo compared to other land covers, like shrubland and grassland, found within the same agro-ecological zone. The magnitude of the area of land converted, as determined by economic modeling, also varied. For example, when the researchers compared miscanthus and switchgrass production necessary to produce a given biofuel volume, they found that converting land to miscanthus had a lower warming albedo effect compared to switchgrass. One cause for this is the fact that miscanthus requires less land than switchgrass to yield an equal volume of ethanol because miscanthus has higher yields. The researchers used computing resources at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility, to process and visualize the albedo and land cover data. "ALCF's high-performance computing resources were critical to our analysis based on the amount of data we were working with. The facility provides powerful and helpful tools for data-intensive analyses like this," said Jiali Wang, an Argonne atmospheric scientist involved in processing the data. "Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels"
Related Links Argonne National Laboratory Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |