Energy News  
BIO FUEL
Bioenergy decisions involve wildlife habitat and land use trade-offs
by Staff Writers
Raleigh NC (SPX) Aug 04, 2016


File image.

New research from North Carolina State University and the U.S. Geological Survey (USGS) finds that choosing how to meet bioenergy goals means making trade-offs about which wildlife species and ecosystems will be most impacted. The work focuses on the southeastern United States, but yields general insights that could inform bioenergy policy globally.

"Bioenergy can refer to wood pellets burned to generate electricity or to liquid biofuels, and bioenergy sources range from crops like switchgrass and sweet sorghum to cultivated pine forests and natural pine and hardwood forests," says Nathan Tarr, lead author of one paper on the work.

"There are questions about how renewable energy targets that promote bioenergy may affect wildlife habitat and forest ecosystems. We wanted to better understand the potential impacts of bioenergy demand in North Carolina and, by extension, in the Southeast and beyond." Tarr is a research associate in the North Carolina Cooperative Fish and Wildlife Research Unit at NC State.

To address these questions, the researchers first developed models that allowed them to translate bioenergy demand into projections of changes in the size and characteristics of ecosystems. The researchers found that the specific mix of biomass sources used to meet demand could play a significant role in shaping ecosystems, especially in forests that contain high biodiversity.

"Our model results show that meeting bioenergy demand by harvesting biomass from forests retained more forest on the landscape, but the remaining forest contained less of the mature floodplain forests and longleaf pine forests that harbor biodiversity," says Jennifer Costanza, lead author of a second paper on the work and a research assistant professor of forestry and environmental resources at NC State.

"On the other hand, using agricultural crops to meet demand reduced overall forest area, but spared more of the high-biodiversity forest land."

"Each of the biomass sources we looked at caused substantial land use change, especially in the coastal plain region, which is known for its high biodiversity and was recently designated a global biodiversity hotspot," Costanza says.

The researchers then used the projected forest changes to model habitat gains and losses for 16 wildlife species.- They were also able to assess what the use of different biomass sources might mean for various wildlife species.

The researchers found that realistic levels of bioenergy demand are large enough to cause large gains or losses of habitat for some species, and the specific mix of biomass sources used to meet demand resulted in tradeoffs regarding wildlife habitats.

"None of the biomass sources that we looked at were good or bad for all species, nor was a single mix of biomass sources consistently the best or worst for all species," Tarr says.

"For example, sourcing biomass by increasing the amount of forests harvested in the state resulted in projected losses of habitat for the prothonotary warbler (Protonotaria citrea), which prefers mature, floodplain forests," Tarr says.

"But harvesting forests increased habitat for the yellow-breasted chat (Icteria virens), which thrives in regenerating forests, and had little effect on the amount of habitat for the mole salamander (Ambystoma talpoideum), which inhabits upland forests."

"While the models used data from North Carolina, this work highlights four general principles that need to be considered when evaluating the wildlife implications of bioenergy demand," Tarr says:

Species that inhabit newly regenerating forests may benefit from bioenergy demand; Species that rely on a single, mature type of habitat - such as bottomland hardwood forests - are at risk if that type of habitat is harvested for bioenergy; Bioenergy demand could exacerbate habitat loss for species that are losing habitat to urbanization; and Species with small ranges deserve special consideration because they can be more sensitive to landscape changes related to bioenergy harvesting.

"This highlights the importance of setting priorities for wildlife conservation," says Matt Rubino, co-author of the paper and a research associate in the North Carolina Cooperative Fish and Wildlife Research Unit at NC State.

"Because any mix of biomass sources is likely to benefit some species and harm others, it is important to identify which species are priorities for conservation so that policies can be designed to minimize negative impacts on those species."

The papers, "Projected Gains and Losses of Wildlife Habitat from Bioenergy Induced Landscape Change" and "Bioenergy Production and Forest Landscape Change in the Southeastern United States" are published in the journal Global Change Biology: Bioenergy. Both papers were co-authored by Robert Abt of NC State; Jaime Collazo of the USGS and the North Carolina Cooperative Fish and Wildlife Research Unit; and Alexa McKerrow of USGS. The work was done with support from the USGS Gap Analysis Program.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
North Carolina State University
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Novel 'repair system' discovered in algae may yield new tools for biotechnology
Ithaca NY (SPX) Aug 3, 2016
A new way of fixing inactive proteins has been discovered in an algae, which uses chloroplast extracts and light to release an interrupting sequence from a protein. Research specialist Stephen Campbell and Professor David Stern at the Boyce Thompson Institute report the discovery in the July 29 issue of the Journal of Biological Chemistry. This repair system may have applications in agricu ... read more


BIO FUEL
Breakthrough solar cell captures CO2 and sunlight, produces burnable fuel

Tesla reaches $2.6 bn deal to buy SolarCity

Russia's First Solar-Powered Satellite Completes Test Flight

Low-carbon movement expected in North America

BIO FUEL
Patented bioelectrodes have electrifying taste for waste

Bioenergy decisions involve wildlife habitat and land use trade-offs

Novel 'repair system' discovered in algae may yield new tools for biotechnology

Biological wizardry ferments carbon monoxide into biofuel

BIO FUEL
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

BIO FUEL
Chemists create vitamin-driven battery

More power to you

New catalyst for hydrogen production

Researchers printed energy-producing photographs

BIO FUEL
ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

New MIT system can identify how much power is being used by each device in a household

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

Sweden's 100 percent carbon-free emissions challenge

BIO FUEL
Tesla loss widens as company works to speed production

German state Bavaria to sue VW over pollution scandal

Ride-share battle ends with Didi buying Uber China operations

VW gets preliminary approval for US emissions settlement

BIO FUEL
Rice crops that can save farmers money and cut pollution

Brazilian restaurants turn waste back into food

Ancient rice DNA data provides new view of domestication history

Mulching plus remediation corrects contaminated lawns

BIO FUEL
Lattice structure absorbs vibrations

Study looks at future of 2D materials

Self-organizing smart materials that mimic swarm behavior

Flexible building blocks of the future









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.