Subscribe free to our newsletters via your
. Bio Fuel News .




BIO FUEL
Bionic Liquids from Lignin
by Staff Writers
Berkeley CA (SPX) Aug 19, 2014


Bionic liquids derived from lignin and hemicellulose show great promise for liberating fermentable sugars from lignocellulose.

While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon - bionic liquids.

Researchers at the U.S. Department of Energy's Joint BioEnergy Institute (JBEI) have developed "bionic liquids" from lignin and hemicellulose, two by-products of biofuel production from biorefineries. JBEI is a multi-institutional partnership led by Lawrence Berkeley National Laboratory (Berkeley Lab) that was established by the DOE Office of Science to accelerate the development of advanced, next-generation biofuels.

"What if we could turn what is now a bane to the bioenergy industry into a boon?" says Blake Simmons, a chemical engineer who is JBEI's Chief Science and Technology Officer and heads JBEI's Deconstruction Division.

"Lignin is viewed as a waste stream that is typically burned to generate heat and electricity for the biorefinery, but if other uses for lignin could be found with higher economic value it would significantly improve the refinery's overall economics. Our concept of bionic liquids opens the door to realizing a closed-loop process for future lignocellulosic biorefineries, and has far-reaching economic impacts for other ionic liquid-based process technologies that currently use ionic liquids synthesized from petroleum sources."

Simmons and Seema Singh, who directs JBEI's biomass pretreatment program, are the corresponding authors of a paper describing this research in the Proceedings of the National Academy of Sciences (PNAS).

The paper is titled "Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose." The lead author is Aaron Socha. Other co-authors are Ramakrishnan Parthasarathi, Jian Shi, Sivakumar Pattathil, Dorian Whyte, Maxime Bergeron, Anthe George, Kim Tran, Vitalie Stavila, Sivasankari Venkatachalam and Michael Hahn.

The cellulosic sugars stored in the biomass of grasses and other non-food crops, and in agricultural waste, can be used to make advanced biofuels that could substantially reduce the use of the fossil fuels responsible for the release of nearly 9 billion metric tons of excess carbon into the atmosphere each year.

More than a billion tons of biomass are produced annually in the United States alone and fuels from this biomass could be clean, green and renewable substitutes for gasoline, diesel and jet fuel on a gallon-for-gallon basis.

Unlike ethanol, "drop-in" transportation fuels derived from biomass have the potential to be directly dropped into today's engines and infrastructures at high levels - greater than 50-percent - without negatively impacting performance. However, if biofuels, including cellulosic ethanol, are to be a commercial success, they must be cost-competitive with fossil fuels.

This means economic technologies must be developed for extracting fermentable sugars from cellulosic biomass and synthesizing them into fuels and other valuable chemical products. A major challenge has been that unlike the simple sugars in corn grain, the complex polysaccharides in biomass are deeply embedded within a tough woody material called lignin.

Researchers at JBEI have been cost-effectively deconstructing biomass into fuel sugars by pre-treating the biomass with ionic liquids - salts that are composed entirely of paired ions and are liquid at room temperature. The ionic liquids that have emerged from this JBEI effort as a benchmark for biomass processing are imidazolium-based molten salts, which are made from nonrenewable sources such as petroleum or natural gas.

"Imidazolium-based ionic liquids effectively and efficiently dissolve biomass, and represent a remarkable platform for biomass pretreatment, but imidazolium cations are expensive and thus limited in their large-scale industrial deployment," says Singh. "To replace them with a renewable product, we synthesized a series of tertiary amine-based ionic liquids from aromatic aldehydes in lignin and hemicellulose."

The JBEI researchers tested the effectiveness of their bionic liquids as a pre-treatment for biomass deconstruction on switchgrass, one of the leading potential crops for making liquid transportation fuels.

After 73 hours of incubation with these new bionic liquids, sugar yields were between 90- and 95-percent for glucose, and between 70- and 75-percent for xylose. These yields are comparable to the yields obtained after pre-treatment with the best-performing imidazolium-based ionic liquids.

"Lignin and hemicellulose are byproducts from the agricultural industry, biofuel plants and pulp mills, which not only makes these abundant polymers inexpensive, but also allows for a closed-loop bio-refinery, in which the lignin in the waste stream can be up-cycled and reused to make more bionic liquid," says lead author Socha, who is now the Director of the Center for Sustainable Energy at the Bronx Community College in New York City.

The current batch of bionic liquids was made using reductive amination and phosphoric acid, but Socha says the research team is now investigating the use of alternative reducing agents and acids that would be less expensive and even more environmentally benign.

"Our results have established an important foundation for the further study of bionic liquids in biofuels as well as other industrial applications," he says. This research was supported by the DOE Office of Science.

.


Related Links
Lawrence Berkeley National Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Regulations needed to identify potentially invasive biofuel crops
Urbana IL (SPX) Aug 11, 2014
If the hottest new plant grown as a biofuel crop is approved based solely on its greenhouse gas emission profile, its potential as the next invasive species may not be discovered until it's too late. In response to this need to prevent such invasions, researchers at the University of Illinois have developed both a set of regulatory definitions and provisions and a list of 49 low-risk biofuel pla ... read more


BIO FUEL
Solar energy that doesn't block the view

MarLar Properties' Rehabbed Homes Add Solar and Geothermal

Sunrun Brings Affordable Home Solar Service to Nevada

Yingli Solar Powers School in Laos with Clean Energy

BIO FUEL
Bionic Liquids from Lignin

Regulations needed to identify potentially invasive biofuel crops

Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

BIO FUEL
U.S. Wind Inc. wins rights to wind energy offshore Maryland

Bidding starts for wind energy offshore Maryland

Juwi Will Build 50-Megawatt Wind Farm in Uruguay

Moventas Exceed high torque density 3 MW gearbox to be piloted

BIO FUEL
Asian inventions dominate energy storage systems

Copper foam turns CO2 into useful chemicals

Stinky gases emanating from landfills could transform into clean energy

Temporary battery tattoo turns human sweat into electricity

BIO FUEL
Earth's resource budget for 2014 already spent: NGO

Michigan speedway makes low-carbon commitments

Sen. Hoeven hails 250-mile transmission line as benchmark

NRG Reaches Agreement to Acquire Goal Zero

BIO FUEL
Mercedes-Benz accused of 'price-fixing': China media

How fast you drive might reveal where you are going

Japan's NSK says hit with $28.5mn fine by China regulators

Obama strategist jumps aboard controversial Uber app

BIO FUEL
Shipwreck yields 200-year-old bottle of drinkable booze

Statistical model predicts performance of hybrid rice

Drought hits Central America's crops, cattle

Dhaka's residents fight back over vanishing green spaces

BIO FUEL
Researchers prove stability of wonder material silicene

WTO confirms China rare earth trade limits break rules

Cisco to cut 6,000 jobs in streamlining

Disney develops method to capture stylized hair for 3-D-printed figurines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.