Biorenewable, biodegradable plastic alternative synthesized by CSU chemists by Staff Writers Fort Collins CO (SPX) Jul 03, 2018
Colorado State University polymer chemists have taken another step toward a future of high-performance, biorenewable, biodegradable plastics. Publishing in Nature Communications, the team led by Professor of Chemistry Eugene Chen describes chemical synthesis of a polymer called bacterial poly(3-hydroxybutyrate) - or P3HB. The compound shows early promise as a substitute for petroleum plastics in major industrial uses. P3HB is a biomaterial, typically produced by bacteria, algae and other microorganisms, and is used in some biomedical applications. Its high production costs and limited volumes render the material impractical in more widespread commodity applications, however. The team, which includes the paper's first author and research scientist Xiaoyan Tang, used a starting material called succinate, an ester form of succinic acid. This acid is produced via fermentation of glucose and is first on the U.S. Department of Energy's list of top 12 biomass-derived compounds best positioned to replace petroleum-derived chemicals. The researchers' new chemical synthesis route produces P3HB that's similar in performance to bacterial P3HB, but their route is faster and offers potential for larger-scale, cost-effective production for commodity plastic applications. This new route is enabled by a class of powerful new catalysts they have designed and synthesized. They have filed a provisional patent through CSU Ventures for the new technology.
New catalyst upgrades carbon dioxide to fuels found by USTC Beijing, China (SPX) Jul 03, 2018 Liquid multi-carbon alcohols such as ethanol and n-propanol are desired as renewable transportation fuels. They offer high energy densities, ease of long-range transport, and direct drop-in usage in existing internal combustion engines. Engineering catalysts that favor high-value alcohols is desired. A research team led by professor YU Shuhong from University of Science and Technology of China of Chinese Academy of Sciences and Edward H. Sargent from University of Toronto has uncovered a catalysis ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |