Energy News  
BIO FUEL
Chemistry Discovery May Revolutionize Cooking Oil Production

When carbon dioxide is added, the solvent becomes hydrophilic, meaning it mixes with water and doesn't like to be in oil. So when carbonated water - carbon dioxide and water - is added to a mixture of the solvent and soybeans, the oil is extracted out of the soybeans and collected. When the carbon dioxide is removed, the solvent switches back to its hydrophobic state.
by Staff Writers
London, UK (SPX) Apr 01, 2010
A Queen's University chemistry professor has invented a special solvent that may make cooking oil production more environmentally friendly. Philip Jessop, Canada Research Chair in Green Chemistry, has created a solvent that - when combined with carbon dioxide - extracts oil from soybeans.

Industries currently make cooking oils using hexane, a cheap, flammable solvent that is a neurotoxin and creates smog. The process also involves distillation, which uses large amounts of energy.

"Carbon dioxide is famous for global warming - it's everybody's favourite gas to hate these days," says Professor Jessop, who specializes in green chemistry. "My research group is trying to figure out if we can use it for something useful. I figure we may not be able to recycle all the carbon dioxide out there but we can recycle a bit of it and make it contribute to society in a positive way."

Jessop's new method of making oil involves a "switchable" solvent. This solvent is hydrophobic, meaning it mixes with oils and doesn't like water.

But when carbon dioxide is added, the solvent becomes hydrophilic, meaning it mixes with water and doesn't like to be in oil. So when carbonated water - carbon dioxide and water - is added to a mixture of the solvent and soybeans, the oil is extracted out of the soybeans and collected. When the carbon dioxide is removed, the solvent switches back to its hydrophobic state.

"The water and the solvent can be used again so everything is recycled. The end result is you have extracted soybean oil and there is no energy-consuming distillation required," says Professor Jessop, who who did research in the 1990s under the supervision of Nobel Chemistry Prize winner Ryoji Noyori.

While this process has only been done in labs, Professor Jessop says he has already heard from cooking oil companies and GreenCentre Canada who are interested in his research. But the solvent is still years away before it can ever be used in large-scale oil manufacturing.

Professor Jessop is trying to get rid of the use of volatile chemicals such as hexane by giving industries an option to use a manufacturing process that is both economically and environmentally friendly.

"The advantage of hexane is that it's cheap. When you do green chemistry, you have to worry about cost. You can't just say 'Look at this, industry, it's greener!' If it costs 10 times as much, no one is going to use it," Professor Jessop says. "So next we have to do the economic calculations to see how much it is going to cost. If manufacturing with this environmentally friendly solvent is really expensive compared to the hexane, we have to figure out how we can we make it cheaper."

The results of Jessop's research have been published in the journal Green Chemistry.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Queen's University
Bio Fuel Technology and Application News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


BIO FUEL
Microbes Reprogrammed To Ooze Oil For Renewable Biofuel
Tempe AZ (SPX) Apr 01, 2010
Using genetic sleight of hand, researcher Xinyao Liu and professor Roy Curtiss at Arizona State University's Biodesign Institute have coaxed photosynthetic microbes to secrete oil-bypassing energy and cost barriers that have hampered green biofuel production. Their results appear in this week's advanced online issue of the Proceedings of the National Academy of Sciences or PNAS. The challe ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement