Subscribe free to our newsletters via your
. Bio Fuel News .




BIO FUEL
Chemistry for the methanol economy
by Staff Writers
Zurich, Switzerland (SPX) Sep 24, 2015


Methanol -- or its derivative dimethyl ether (shown left) -- is converted into ethylene (top center) on the surface of alumina. Image courtesy Aleix Comas-Vives and ETH Zurich. For a larger version of this image please go here.

Ethylene is produced in greater amounts than any other basic chemical in the world. The small molecule consisting of two carbon atoms and four hydrogen atoms, it is a basic building block in the manufacture of a wide range of basic chemicals, polymers and plasticisers. The packaging material polyethylene (PE) is just one popular application among many.

Today ethylene is primarily manufactured from crude oil in a process known as cracking, but the ongoing price volatility and the finite availability of crude oil have caused a surge for an alternative manufacturing approach: its synthesis from methanol in the so-called methanol-to-olefins (MTO) process. Now a team of scientists at ETH Zurich and ENS Lyon has worked out in detail how the reaction begins.

Chemists developed the MTO process in the late 1970s, and today there are manufacturing plants all over the world. China has more MTO plants than any other country: five large-scale facilities are currently in operation and a further thirteen are planned. The reason for this is simple: China has a huge demand for petrochemicals with limited access to oil deposits.

What the country does have is large coal reserves, and methanol can be manufactured quite easily by gasifying coal. In addition, methanol can be made from natural gas. Consequently, Chinese investors are planning to manufacture methanol in the United States for export to China, drawing on the U.S.'s plentiful shale gas reserves.

Where does the requisite carbenium ion come from?

For the MTO reaction to occur, methanol is brought together with so-called zeolites at 400 degrees Celsius. These zeolites are porous, granular aluminosilicate minerals facilitating the reaction as catalysts. For a long time, chemists were unable to exactly explain the MTO reaction.

20 years ago scientists postulated that other molecules had to be involved: positively charged cyclic hydrocarbon molecules in which five to six carbon atoms are bonded together, also known as cyclic carbenium ions. Such species actually react with methanol: They stitch two methanol molecules together and form a carbon-carbon bond, before producing ethylene.

However, if these cyclic carbenium ions are involved and necessary for the reaction to start, the question is where do they come from? Many scientists proposed that these ions must be present as adventitious contaminants in methanol.

Now the Franco-Swiss research team has proposed a different explanation. "We have shown that alumina, which is always present in zeolites, can easily transform methanol into ethylene and other hydrocarbons, which can then be converted into carbenium ions in the pores of the zeolite catalyst," explains Christophe Coperet, Professor of Surface and Interface Chemistry at ETH Zurich and one of the authors of the study.

"While the MTO process is up and running at industrial scale, this work shades new light on how the process starts. And it shows that simple oxide materials like alumina can trigger carbon-carbon bond formation from methanol derivatives, thus opening new avenues for the upgrading of methanol into long chain hydrocarbons."

Comas-Vives A, Valla M, Coperet C, Sautet P: Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina. ACS Central Science, 5 August 2015, doi: 10.1021/acscentsci.5b00226


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BIO FUEL
Biodiesel made easier and cleaner with waste-recycling catalyst
Cardiff, UK (SPX) Sep 15, 2015
Researchers at Cardiff University have devised a way of increasing the yield of biodiesel by using the waste left over from its production process. Using simple catalysis, the researchers have been able to recycle a non-desired by-product produced when biodiesel is formed from vegetable oil, and convert this into an ingredient to produce even more biodiesel. It is believed this new p ... read more


BIO FUEL
The precision of solar photovoltaic power measurements doubled

DoE contracts SolarReserve to develop concentrating solar technology

Sky Solar and Hudson Clean Energy to fund up to $100 million in solar projects

Scientists improve measurements of solar panel power output

BIO FUEL
Biodiesel made easier and cleaner with waste-recycling catalyst

Potential of disk-shaped small structures, coccoliths

Water heals a bioplastic

Waste coffee used as fuel storage

BIO FUEL
Adwen reaches a 630 MW capacity in operations

As wind-turbine farms expand, research shows they lose efficiency

Researchers find way for eagles and wind turbines to coexist

North Dakota plans more wind power capacity

BIO FUEL
Designing switchable electric and magnetic order for low-energy computing

Coal's image suffering in climate debate: BHP

New ORNL catalyst addresses engine efficiency, emissions quandary

SeaRoc and Natural Power helping EDF's Paimpol-Brehat Tidal Farm

BIO FUEL
Burning all fossil energy would eliminate all ice of Antarctica

Fuel savings can pay for green energy shift: report

New wearable technology can sense appliance use, help track carbon footprint

British study finds new potential for carbon storage

BIO FUEL
Apple revving work on electric car

Start-ups, IT giants explore auto world of tomorrow

VW scandal: Could the same happen in Europe?

Deakin has global designs on cars of future through partnership with GM

BIO FUEL
Hunter-gatherers were enjoying oatmeal 30,000 years ago

Study of US farm data shows loss of crop diversity

Scientists learn how to predict plant size

French winemakers hunt for climate change-resistant grape

BIO FUEL
Physicists defy conventional wisdom to identify ferroelectric material

Engineers unlock remarkable 3-D vision from ordinary digital camera technology

Making 3-D objects disappear

De Beers says 'challenging' time for diamonds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.