Energy News  
BIO FUEL
Digestive ability of ancient insects could boost biofuel development
by Staff Writers
York UK (SPX) Feb 27, 2018

The firebrat and silverfish are close relatives and have the ability to digest cellulose.

A study of the unusual digestive system of an ancient group of insects has provided new insights into future biofuel production.

Published in Nature Communications, the research reveals that the ability of some insects to efficiently digest cellulose could be exploited for industrial processes, such as the production of sustainable low carbon fuels to cut greenhouse gas emissions associated with fossil fuel use.

The surprising find occurred when the team at the University of York were investigating the digestive system of firebrats, which had been previously shown to thrive on crystalline cellulose, the natural fibre, abundant in straw, paper and cardboard.

Professor Simon McQueen Mason, from the University of York's Department of Biology, said: "Firebrats belong to one of the most primitive groups of insects; they appeared on land during the Devonian Period, some 420 million years ago. Despite this long evolutionary history, however, these insects have been generally overlooked by scientists. "Cellulose forms the fibres that give the cell walls of plants their strength and has a high degree of structural order, making it solid and tough."

Until now it was a mystery how firebrats had found a way to digest cellulose so effectively. In looking at their digestive system, the scientists discovered something they weren't expecting.

Dr Federico Sabbadin, from the University of York's Department of Biology, said: "Inside their gut the firebrats had a group of uncharacterised proteins that make up 20% of their carbohydrate digestive enzymes.

"On further inspection, these proteins proved to be a new class of enzyme, called lytic polysaccharide monooxygenases (LPMOs), which attack crystalline polysaccharides. Our study revealed that these enzymes are used by firebrats to greatly increase the rate of cellulose digestion."

Previously, LPMOs were only known to occur in fungi, bacteria and viruses, but analysis of this new family showed it was widespread among invertebrates. Scientists suggest that it is possible that these enzymes could be adopted in industrial processes to break down cellulose into fermentable sugars for biofuel production.

Professor McQueen Mason said: "These digestive LPMOs appear to have evolved from enzymes that digest a substance called chitin, which protects the respiratory system of insects.

"We found that these ancestral genes are essential for metamorphosis and that interfering with their function is lethal to insects. This could have important implications for the development of new methods to control disease-carrying mosquitoes and agricultural pests such as locusts."


Related Links
University of York
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
The new bioenergy research center: building on ten years of success
Austin TX (SPX) Feb 20, 2018
Building on the success of 10 years of investigation into the production of renewable fuels from plants, the Great Lakes Bioenergy Research Center (GLBRC), led by the University of Wisconsin-Madison, recently embarked on a new mission: to develop sustainable alternatives to transportation fuels and products currently derived from petroleum. On Feb. 18 at the Annual Meeting of the American Association for the Advancement of Science in Austin, Texas, Tim Donohue, GLBRC director and UW-Madison profes ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Avaada Power commits bllion to Uttar Pradesh solar projects

Why polymer solar cells deserve their place in the sun

New clean energy targets put South Australia on the world map

A new approach towards highly efficient and air-stable perovskite solar cells

BIO FUEL
New funding surfaces for offshore Gambia

Schlumberger and Subsea 7 propose joint venture

Crude oil prices bounce back after supply-side jitters

Seventh oil discovery made offshore Guyana

BIO FUEL
Extinct lakes of the American desert west

Even without the clean power plan, US can achieve Paris Agreement emissions reductions

Key to predicting climate change could be blowing in the wind, researchers find

Research identifies 'evolutionary rescue' areas for animals threatened by climate change

BIO FUEL
Scientists take step toward safer batteries by trimming lithium branches

Charging ahead to higher energy batteries

Shedding high-power laser light on the plasma density limit

New method for waking up devices

BIO FUEL
Evolution plays many tricks against large-scale bioproduction

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

BIO FUEL
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Huawei's AI-powered smartphone drives a Porsche

BIO FUEL
Berlin films journey into agribusiness wastelands

Chinese billionaire sees baguette goldmine in French fields

Crop-saving soil tests now at farmers' fingertips

Land use change has warmed the Earth's surface

BIO FUEL
Silk fibers could be high-tech 'natural metamaterials'

Squid skin could be the solution to camouflage material

Atomic structure of ultrasound material not what anyone expected

Sixty years of technology in space - what's changed?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.