Energy News  
BIO FUEL
Energy-efficient reaction drives ORNL biofuel conversion technology
by Staff Writers
Oak Ridge TN (SPX) Nov 09, 2015


Chaitanya Narula led analysis of an ORNL biofuel-to-hydrocarbon conversion technology to explain the underlying process. Image courtesy ORNL. For a larger version of this image please go here.

A new study from the Department of Energy's Oak Ridge National Laboratory explains the mechanism behind a technology that converts bio-based ethanol into hydrocarbon blend-stocks for use as fossil fuel alternatives.

Scientists have experimented for decades with a class of catalysts known as zeolites that transform alcohols such as ethanol into higher-grade hydrocarbons. As ORNL researchers were developing a new type of zeolite-based conversion technology, they found the underlying reaction unfolds in a different manner than previously thought.

"For 40 years, everyone thought that these reactions must go first from ethanol to ethylene, and then from there it forms longer chains. We were able to show that it's not how this occurs," said ORNL's Brian Davison, coauthor on the study published in Scientific Reports.

The researchers' analysis found that this energy-consuming intermediary step is not necessary for the conversion to happen. Instead, an energy-producing "hydrocarbon pool" mechanism allows the zeolite catalysts to directly produce longer hydrocarbon chains from the original alcohols.

"It challenges a long-held but incorrect assumption," said ORNL coauthor Chaitanya Narula. "It has been assumed that you must go from ethanol to ethylene, which is endothermic and requires energy. We showed this step doesn't occur, and that the overall reaction is slightly exothermic."

ORNL researchers tracked the molecular transition in labeling experiments with deuterium, a hydrogen isotope, to confirm the hydrocarbon pool mechanism.

The research, supported by DOE's BioEnergy Technologies Office, has implications for the energy efficiency and cost of catalytic upgrading technologies proposed for use in bio-refineries. Uncovering the mechanism behind the reaction helps support the potential economic viability of ORNL's direct biofuel-to-hydrocarbon conversion approach.

"Our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to yield fuels such as gasoline, diesel and jet fuel or commodity chemicals," Narula said.

The ORNL-developed catalyst and conversion process were licensed in 2014 to Vertimass, a startup company based in Irvine, CA. ORNL researchers are working with Vertimass through a separate DOE-funded project to scale the technology to the commercial level.

The paper is published in Scientific Reports and is titled "Heterometallic Zeolites, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons." Coauthors are ORNL's Chaitanya Narula, Zhenglong Li, Erik Casbeer, Robert Geiger, Melanie Moses-Debusk, Martin Keller, Michelle Buchanan and Brian Davison.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Vast energy value in human waste
New York NY (SPX) Nov 09, 2015
Biogas from human waste, safely obtained under controlled circumstances using innovative technologies, is a potential fuel source great enough in theory to generate electricity for up to 138 million households - the number of households in Indonesia, Brazil, and Ethiopia combined. A report from UN University's Canadian-based Institute for Water, Environment and Health estimates that biogas ... read more


BIO FUEL
Lightsource Renewable Energy closes 284m Pound Senior and Mezzanine Refinancing

Storage advance may boost solar thermal energy potential

Kyocera TCL Solar completes solar power plant on Reclaimed Island

Renewables key in race against climate change clock

BIO FUEL
Energy-efficient reaction drives ORNL biofuel conversion technology

Vast energy value in human waste

Chesapeake Bay Seed Capital Fund invests $150,000 in Manta Biofuel

US Ethanol Producers Looking at Thin Profit Margins for 2015-16

BIO FUEL
Scotland hosting new type of offshore wind program

E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

BIO FUEL
Brownian Carnot engine

NbSe2, a true 2-D superconductor

New low-cost battery could help store renewable energy

Tech-sharing key to success of climate summit: France

BIO FUEL
World in 'uncharted territory' as planet warms 1C, CO2 at new high

U.S., China lead in emissions, IEA finds

Up to 400 bn euros needed for clean EU energy grid by 2050: study

National contributions provide entry point for the low-carbon transformation

BIO FUEL
Fitch slashes VW ratings over poor management of pollution fraud

Making cars of the future stronger, using less energy

Moody's downgrades VW as toll from emissions scandal grows

Nissan boosts annual outlook on new models, N.America sales

BIO FUEL
Climate change is good news for English wine

Researchers uncover the history of rice cultivation

Cow-calf grazing practices could mitigate greenhouse gas emissions

Faster digestion in kangaroos reduces methane emissions

BIO FUEL
New ORNL catalyst features unsurpassed selectivity

Cyclic healing removes defects in metals while maintaining strength

Microscopy unveils lithium-rich transition metal oxides

Scanning reveals anomalies in Great Pyramid at Giza









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.