Energy-efficient reaction drives ORNL biofuel conversion technology by Staff Writers Oak Ridge TN (SPX) Nov 09, 2015
A new study from the Department of Energy's Oak Ridge National Laboratory explains the mechanism behind a technology that converts bio-based ethanol into hydrocarbon blend-stocks for use as fossil fuel alternatives. Scientists have experimented for decades with a class of catalysts known as zeolites that transform alcohols such as ethanol into higher-grade hydrocarbons. As ORNL researchers were developing a new type of zeolite-based conversion technology, they found the underlying reaction unfolds in a different manner than previously thought. "For 40 years, everyone thought that these reactions must go first from ethanol to ethylene, and then from there it forms longer chains. We were able to show that it's not how this occurs," said ORNL's Brian Davison, coauthor on the study published in Scientific Reports. The researchers' analysis found that this energy-consuming intermediary step is not necessary for the conversion to happen. Instead, an energy-producing "hydrocarbon pool" mechanism allows the zeolite catalysts to directly produce longer hydrocarbon chains from the original alcohols. "It challenges a long-held but incorrect assumption," said ORNL coauthor Chaitanya Narula. "It has been assumed that you must go from ethanol to ethylene, which is endothermic and requires energy. We showed this step doesn't occur, and that the overall reaction is slightly exothermic." ORNL researchers tracked the molecular transition in labeling experiments with deuterium, a hydrogen isotope, to confirm the hydrocarbon pool mechanism. The research, supported by DOE's BioEnergy Technologies Office, has implications for the energy efficiency and cost of catalytic upgrading technologies proposed for use in bio-refineries. Uncovering the mechanism behind the reaction helps support the potential economic viability of ORNL's direct biofuel-to-hydrocarbon conversion approach. "Our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to yield fuels such as gasoline, diesel and jet fuel or commodity chemicals," Narula said. The ORNL-developed catalyst and conversion process were licensed in 2014 to Vertimass, a startup company based in Irvine, CA. ORNL researchers are working with Vertimass through a separate DOE-funded project to scale the technology to the commercial level. The paper is published in Scientific Reports and is titled "Heterometallic Zeolites, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons." Coauthors are ORNL's Chaitanya Narula, Zhenglong Li, Erik Casbeer, Robert Geiger, Melanie Moses-Debusk, Martin Keller, Michelle Buchanan and Brian Davison.
Related Links Oak Ridge National Laboratory Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |