Energy News  
BIO FUEL
Eucalyptus tree genome deciphered

Eucalyptus trees grow very fast and can deliver the necessary biomass for making these bioproducts. "Trees are advantageous when it comes to producing biomass. Unlike seasonal crops, they can be harvested year-round to supply a stable supply of biomass. In general they also don't compete with food crops. In addition, wood processing is well established in the pulp and paper industry. Similar processing can be used to isolate the cellulose from the wood for biofuels and other products," Prof Myburg explained.
by Staff Writers
Pretoria, South Africa (SPX) May 16, 2011
The key to the survival of forestry in South Africa as well as many new possibilities for renewable bioproducts like biofuels and biopolymers may now be available with the click of a mouse.

This follows on a team of international researchers, led by Prof Zander Myburg from the Department of Genetics and the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria (UP) - in collaboration with the US Department of Energy (DOE) Joint Genome Institute (JGI) - making available the complete genome sequence of the forest tree species, Eucalyptus grandis.

It took the team, who had the support of a network of more than 130 Eucalyptus researchers from 18 countries, four years to complete the genome sequence and annotate more than 40,000 genes contained within it. According to Prof Myburg, these scientists, as well as countries with commercial eucalypt plantations will be the primary beneficiaries of the genome sequence now available on the internet (http://www.phytozome.net/eucalyptus.php).

The Eucalyptus research community will continue to add value to the genome sequence in order to make it more accessible to the broader scientific community. Publication of the genome sequence in a scientific journal is expected to take place by early 2012.

A genome sequence can be compared to a blueprint or very complex programming code containing a complete set of instructions for the development and functioning of an organism. The code is written in DNA, which is organised into chromosomes and genes and can be found in every cell of a living organism. But it is the unique sequence and expression of the genes in eucalypt trees that make them such efficient producers of woody biomass.

Once an organism's genome is sequenced (E. grandis' genome is about 640 million DNA base pairs long), researchers can trace genes involved in important characteristics like growth, wood quality and resistance to disease.

Ultimately, this will result in more efficient tree breeding programmes. Comparative genomic studies, for example between woody and herbaceous plants, can also be used by scientists seeking genes that are unique to trees and wood-forming processes. All of these are important factors in the universal search for alternative, renewable sources to replace fossil fuels and chemicals.

According to Prof Myburg, the USA aims to replace about 30% of its fossil fuels with biofuels and other alternative energy sources within the next two decades. Research is done on plants rich in cellulose (the main chemical component of wood), because glucose - the building block of cellulose - can be used in the production of biofuels and other renewable products.

Eucalyptus trees grow very fast and can deliver the necessary biomass for making these bioproducts. "Trees are advantageous when it comes to producing biomass. Unlike seasonal crops, they can be harvested year-round to supply a stable supply of biomass. In general they also don't compete with food crops. In addition, wood processing is well established in the pulp and paper industry. Similar processing can be used to isolate the cellulose from the wood for biofuels and other products," Prof Myburg explained.

All of the above was enough reason for the DOE JGI to support the Eucalyptus Genome Project under its Community Sequencing Program selections for 2008 (http://www.jgi.doe.gov/News/news_6_8_07.html). Locally the Department of Science and Technology (DST) has awarded strategic funds to UP in support of Prof Myburg's leadership role in the genome project and to promote local Eucalyptus genome research.

In South Africa, eucalypt plantations form the basis of commercial forestry, and specifically of multi-billion Rand industries like the pulp and paper industry. With the sequencing of the eucalypt genome, this industry now has access to information and technology to breed trees with desirable properties for a range of end products.

"Ultimately it is about the competitiveness of the forestry industry in South Africa," Prof Myburg says. He explains that, due to favourable climate conditions and rapidly growing eucalypt plantations, the Southern Hemisphere currently supplies most of the world's demands in terms of wood pulp and fibre.

Areas for forestry cultivation in our country can, however, not really expand - a scenario much different from other countries investing in commercial forestry within the BRICS economical grouping like China, India and Brazil. Locally, the potential area that can be used for forestry may even decline due to factors like land claims.

The availability of water in South Africa may also limit forestry activities in future. This means that the quality of trees will have to improve to ensure economic competitiveness, a challenge that has received a head start with the sequencing of the Eucalyptus genome and South Africa's strategic participation in the project.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Pretoria
Bio Fuel Technology and Application News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


BIO FUEL
Turning plants into power houses
St. Louis MO (SPX) May 16, 2011
"I have a slide that has a photo of a cornfield and a big photovoltaic array," says Robert Blankenship, a scientist who studies photosynthesis at Washington University in St. Louis. "When I give talks I often ask the audience which one is more efficient. Invariably the audience votes overwhelmingly in favor of photosynthesis." They are wrong. This question and its surprising answer (below) ... read more







BIO FUEL
Photosynthesis or photovoltaics: Weighing the impact

In Less than 100 Days Discount Barry Trashes Reputation and Commercial Law

Solar cells more efficient than photosynthesis - for now

Solar thermal hydrogen fuel production cost targets in sight

BIO FUEL
BIO FUEL
Evolutionary lessons for wind farm efficiency

Global warming won't harm wind energy production, climate models predict

Study: Warming won't lessen wind energy

Mortenson Construction to Build its 100th Wind Project

BIO FUEL
Coal power still reigns in Australia

Scientists suggest independent monitoring of deep-sea hydrocarbon industry

Enhanced electrical energy storage may result from professor's research

Iraq sticks to ambitious oil output target

BIO FUEL
Russia plans bikes and windmills in its Silicon Valley

IEA: CO2 from buildings could be cut 25%

Eon, RWE lose money on volatile market

Power shortages hit Venezuela again

BIO FUEL
Saab, Spyker announce auto deal in China

Saab, Spyker announce auto deal in China

Berlin doubles subsidies for electric cars

Perfect welds for car bodies

BIO FUEL
Drought tolerance in crops: Shutting down the plant's growth inhibition under mild stress

India's top court imposes ban on 'toxic' pesticide

New Strategy Aims to Reduce Agricultural Ammonia

'Liquid smoke' from rice shows potential health benefits

BIO FUEL
How to control complex networks

Video gaming teens sleep less: study

Mixing fluids efficiently in confined spaces: Let the fingers do the working

Shaking down frozen helium: In a 'supersolid' state, it has liquid-like characteristics


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement