. Energy News .




.
BIO FUEL
Fungal Analysis Reveals Clues for Targeted Biomass Deconstruction
by Staff Writers
Washington DC (SPX) Mar 26, 2012

Scanning electron micrograph of Ceriporiopsis subvermispora mycelium on wood. (R. Blanchette, University of Minnesota).

Massive-scale genome sequencing projects supported by the U.S. Department of Energy (DOE) and being carried out at the DOE Joint Genome Institute (JGI) highlight the importance of learning how the cellulose, hemicellulose and lignin that serve as a plant's infrastructure can be broken down by these forest organisms to extract needed nutrients.

Among the fungi being studied are species that can selectively break down the cell wall components cellulose and lignin - the number one and two most abundant biopolymers on Earth.

In a study published online the week of March 19, 2012 in the Proceedings of the National Academy of Sciences, an international team of scientists presented a comparative genomic analysis of two white rot fungi whose genomes were generated and annotated at the DOE JGI under the Community Sequencing Program (CSP).

Both the fungus Phanaerochaete chrysosporium (sequenced by DOE JGI in 2004), and its close relative Ceriporiopisis subvermispora are found all over the world and are of interest to bioenergy researchers because they possess enzymes that can break down plant biomass and could therefore be useful for accelerating biofuels production.

The study revealed substantial differences among the sets of genes involved in lignocellulose degradation, providing further insight into the mechanics of how white rots do their dirty work.

"The fact that we have such a large group of people involved in this project is a clear demonstration that there's certainly interest in enzyme discovery," said study senior author and DOE JGI collaborator Dan Cullen of the U.S. Department of Agriculture Forest Service, Forest Products Laboratory (FPL).

"In this particular case though, one would come away thinking more about the role of white rot fungi in the carbon cycle. Lignin is a recalcitrant compound in forest ecosystem biomass and very few fungi have the capability to degrade lignin. Even fewer fungi have the ability to selectively remove lignin at such an efficient rate. C. subvermispora is one exception in its ability to do just that."

Cullen and his colleagues compared the fungal genomes to learn more about the basis of C. subvermispora's ability to selectively break down lignin. Understanding this process of selective ligninolysis is of longstanding interest to the pulp and paper industry. According to the American Forest and Paper Association, approximately $175 billion worth of forest products such as pulp and paper are produced annually, and account for five percent of the nation's GDP.

Analyzing the diversity of wood-decaying fungi and cataloging enzymes involved in lignocellulose degradation is one of the goals of the DOE JGI Fungal Genomics Program led by Igor Grigoriev.

"We are in the process of conducting functional comparative genomics of more than 20 such fungi sequenced or currently being sequenced at the DOE JGI," he said. "This should provide us a better understanding of the diverse and complex mechanisms of lignocellulose degradation in fungi, the influence of these mechanisms on carbon cycling in the forest ecosystem, and ultimately lead to improvements in biopulping."

Kent Kirk, a former FPL researcher who is considered a leading figure in the study of lignin degradation by fungi, provided perspective on how the current research could impact the pulp and paper industry.

"This grew out of fundamental research by the University of Minnesota and the FPL where they applied the concept of 'biopulping' - the partial decay of wood by lignin-degrading fungi to decrease the energy required for mechanical pulping. Cerioporiopsis subvermispora quickly became the 'biopulper' of choice."

Kirk described how wood chips treated with the fungus for two weeks required 30% less energy for pulping than untreated chips and how outdoor trials were repeatedly successful at the 50-ton scale. "The technology has not yet been commercially adopted, but as energy costs continue to rise, it should be increasingly attractive for implementation," Kirk said.

With detailed biochemical analyses conducted by study co-author Angel Martinez's team at the Spanish National Research Council (CSIC) in Madrid, Spain, the researchers found that the C. subvermispora genome had more manganese peroxidases and laccase - enzymes that may speed the degradation of lignin - than the P. chrysosporium genome. Martinez added that his group's work also revealed the presence of other lignin-degrading enzymes that had not previously been found in C. subvermispora cultures.

"Since Phanaerochaete doesn't have laccases, they're not absolutely necessary for lignin degradation," said Cullen, "though it could be that they're very important and play a role in Ceriporiopisis. The most persuasive part of the data are the expansion and expression of the manganese peroxidases, whose role in lignin degradation is more generally accepted."

Cullen added that the paper also suggests the cellulose-degrading portion of C. subvermispora's genome is "somewhat repressed" relative to P. chrysosporium, another angle of further study to understand the Ceriporiopisis genome's selectivity for lignin.

"It could be both," he said, "There's not a simple clear final answer. To really make direct progress on understanding the mechanism of selective lignin degradation, will require development of more experimental tools, such as those for genetic analysis. That is what's next."

The DOE JGI, which has sequenced more fungi than any other institution in the world, recently issued the 2013 call for Community Sequencing Program (CSP) Letters of Intent for large-scale sequence-based genomic science projects.

This call targets topics of relevance to DOE missions in alternative fuels, global carbon cycling, and biogeochemistry. Up to 50% of capacity for the 2013 CSP will be allocated for projects that address areas of plant and plant-microbe interactions, microbial emission and capture of greenhouse gases, metagenomics, and exploit such DOE JGI capabilities as single-cell genomics and DNA synthesis.

Related Links
DOE's Office of Science
Bio Fuel Technology and Application News




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



BIO FUEL
Boeing , Airbus and Embraer team up to develop aviation biofuels
Geneva, Switzerland (SPX) Mar 26, 2012
Boeing, Airbus and Embraer have signed a memorandum of understanding to work together on the development of drop-in, affordable aviation biofuels. The three leading airframe manufacturers agreed to seek collaborative opportunities to speak in unity to government, biofuel producers and other key stakeholders to support, promote and accelerate the availability of sustainable new jet fuel sources. ... read more


BIO FUEL
Brown liquor and solar cells to provide sustainable electricity

China criticizes solar panel tariffs

Obama blames Congress for failed solar firm

Eco Environments helps Olympic legacy project to soar

BIO FUEL
Fungal Analysis Reveals Clues for Targeted Biomass Deconstruction

Boeing , Airbus and Embraer team up to develop aviation biofuels

Barrels of Biofuel Flowing from Success at Louisiana Facility

Cobalt and the Naval Air Warfare Center Team Up to Produce a Renewable Jet Fuel From Bio N-Butanol

BIO FUEL
Denmark OKs ambitious green energy deal

GDF vows 6,000 jobs in French wind farm bid

Engineers enlist weather model to optimize offshore wind plan

Significantly Higher Potential for Wind Energy in India than Previously Estimated

BIO FUEL
Technip wins North Sea underwater contract

Kurds say will end oil exports if Iraq keeps funds

Renewable battery cathode formed from waste

Quantum copies do new tricks

BIO FUEL
Calif. jail part of 'microgrid' project

Iberdrola awards $400M in smart grid buys

Australia lagging in carbon cuts

Is there a future in the US for renewables without federal incentives?

BIO FUEL
Three-cylinder cars coming to U.S.

Space foil helping to build safer cars

Hydrogen power in real life: clean and energy efficient

The "twilight zone" of traffic costs lives at stoplight intersections

BIO FUEL
U.K. lifts Chernobyl restrictions on sheep

Produce safety future focus of supermarkets, farmers and consumers

Cooking better biochar: Study improves recipe for soil additive

Small clique of nations dominate global trading web of food and water

BIO FUEL
Astrium's satellites reap first fruits in Canada

Liquid-like Materials May Pave Way for New Thermoelectric Devices

ISS crew takes shelter to avoid passing space junk

How the alphabet of data processing is growing


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement