Energy News  
BIO FUEL
Fungi that evolved to eat wood offer new biomass conversion tool
by Staff Writers
Amherst MA (SPX) Jul 25, 2017


Basidiomycota brown rot fungi use a non-enzymatic, chelator-mediated biocatalysis method to digest woody biomass that is very different than methods used by any other microorganism studied, say Barry Goodell and colleagues at UMass Amherst, working with an international team. Credit Karel Tejkal, used with permission

Twenty years ago, microbiologist Barry Goodell, now a professor at the University of Massachusetts Amherst, and colleagues discovered a unique system that some microorganisms use to digest and recycle wood. Three orders of "brown rot fungi" have now been identified that can break down biomass, but details of the mechanism were not known.

Now, using several complementary research tools, Goodell and colleagues report new details of this unexpected mechanism at work, one that surprisingly does not involve enzymes, the usual accelerators of chemical reactions.

Instead, Basidiomycota brown rot fungi, use a non-enzymatic, chelator-mediated biocatalysis method that is "very different than that used by any other microorganism studied," he says. Chelators are organic compounds that bind metal ions, and in this case, they also generate "hydroxyl radicals" to break down wood and produce simple building-block chemicals.

Described by collaborators at Oak Ridge National Laboratory as "a paradigm shift in understanding fungal biocatalysis for biomass conversion," the findings appear in the current issue of Biotechnology for Biofuels. Goodell says, "Our research on fungal bioconversion systems looks at a novel mechanism that has potential use in bio-refineries to 'deconstruct' woody biomass for conversion into platform chemicals for biopolymers or energy products."

Brown rot fungi appear in both the northern and southern hemispheres and are some of the most common decay fungi in North America. Because they evolved relatively recently, there are fewer brown rot species compared to older white rot species. "However, because of their efficiency in degrading wood, brown rot fungi have come to dominate, particularly in degrading softwoods," Goodell says, and they now dominate by recycling approximately 80 percent of the softwood biomass carbon in the world, found mostly in the great forests of the northern hemisphere.

Goodell points out that most microorganisms use enzymes to break down compounds, but enzymes are huge molecules and physiologically "expensive" to produce because they contain so much nitrogen. "Scientists used to think that these fungi would make holes in the cell wall that would let in the big enzymes," he notes, a sort of pretreatment model. "But as we explain here, that is not how it works."

"The fungi we study use a non-enzymatic, catalytic chelator-mediated Fenton system instead, a very simple process that makes use of hydrogen peroxide, also generated by the fungal system, and iron found in the environment," Goodell says. He adds that he and colleagues believe the brown rot fungi's efficiency comes from their use of the chelator-mediated Fenton system rather than the use of enzymes exclusively, as white rot fungi do.

Goodell notes, "This group of brown rot fungi figured out how to generate hydroxyl radicals at a distance, that is, away from the fungus, to keep them away so the radicals won't damage themselves while breaking down wood." Hydroxyl radicals are very damaging to cells, the most potent oxidizing agents known in biological systems.

For this work, Goodell and colleagues including his collaborator Jody Jellison, now director of the Center for Agriculture, Food and the Environment at UMass Amherst, used a suite of investigative methods including small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) to fully describe the process.

Goodell says, "These fungi do produce a limited number of enzymes, but they come into play after the non-enzymatic action conversion by the fungi using chelators. The chelators are secondary metabolites, whose function is not easily followed using 'omics' techniques such as genomics. Using many advanced techniques though, we saw that some very small, low-molecular-weight compounds were working their way into the cell wall. This new paper describes how."

Goodell and Jellison relate a process that begins with the fungi in the lumen - the hollow space found inside plant cells. Using their hyphae, thread-like growth filaments, the fungi then mount a biochemical attack on the wood cell components.

As Goodell explains, "This group of fungi evolved a way to break down the wood substrate by first diffusing chelators into the cell wall. The fungus makes the chelator and produces hydrogen peroxide from oxygen, and together they start to digest the cell wall into the sugar found in the basic building block of wood, glucose, which the fungus can use as food. This is how these fungi are eating the wood."

BIO FUEL
How enzymes produce hydrogen
Bochum, Germany (SPX) Jul 24, 2017
Researchers at Ruhr-Universitat Bochum and the Freie Universitat Berlin have clarified the crucial catalytic step in the production of hydrogen by enzymes. The enzymes, called [FeFe]-hydrogenases, efficiently turn electrons and protons into hydrogen. They are thus a candidate for the biotechnological production of the potential energy source. 'In order to produce hydrogen on an industrial ... read more

Related Links
University of Massachusetts at Amherst
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
UNIST hits new world efficiency record with perovskite solar cells

Measure adds Aerial Solar Plant Inspections to Drone Services Portfolio

Cubico completes acquisition of Andasol 1 and Andasol 2 concentrated solar power plants in Spain

India's ageing trains get green makeover with solar panels

BIO FUEL
Petronas drops massive natural gas project in Canada

Hess: Taxes mask improvements in the second quarter

After LNG project scrapped, TransCanada looks for more export options

Africa-focused Tullow Oil cuts costs, but keeps output steady

BIO FUEL
Could a geoengineering cocktail control the climate

Sea temperature changes contributing to droughts

Dust deposits give new insights into the history of the Sahara

California extends tough climate policy measures to 2030

BIO FUEL
New chromium-based superconductor has an unusual electronic state

Molecular microscopy illuminates molecular motor motion

High-temperature superconductivity in B-doped Q-carbon

First direct observation and measurement of ultra-fast moving vortices in superconductors

BIO FUEL
Fungi that evolved to eat wood offer new biomass conversion tool

How enzymes produce hydrogen

New biofuel technology significantly cuts production time

Solving a sweet problem for renewable biofuels and chemicals

BIO FUEL
Cartel probe looms over German car industry

Audi voluntarily recalls up to 850,000 diesel vehicles

World gears up for electric cars despite bumps in road

UK to ban sale of petrol and diesel cars by 2040

BIO FUEL
Disneyland China falls a-fowl of huge turkey leg demand

French grape harvest heading to historic low

Kenyan cattle herders defend 'necessary' land invasions

Using treated graywater for irrigation is better for arid environments

BIO FUEL
Writing with the electron beam: Now in silver

Scientists announce the quest for high-index materials

A new synthesis route for alternative catalysts of noble metals

Synthetic materials systems that can "count" and sense their size









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.