How power-to-gas technology can be green and profitable by Staff Writers Munich, Germany (SPX) Feb 27, 2019
Hydrogen production based on wind power can already be commercially viable today. Until now, it was generally assumed that this environmentally friendly power-to-gas technology could not be implemented profitably. Economists at the Technical University of Munich (TUM), the University of Mannheim and Stanford University have now described, based on the market situations in Germany and Texas, how flexible production facilities could make this technology a key component in the transition of the energy system. From fertilizer production, as a coolant for power stations or in fuel cells for cars: Hydrogen is a highly versatile gas. Today, most hydrogen for industrial applications is produced using fossil fuels, above all with natural gas and coal. In an environmentally friendly energy system, however, hydrogen could play a different role: as an important storage medium and a means of balancing power distribution networks: excess wind and solar energy can be used to produce hydrogen through water electrolysis. This process is known as power-to-gas. The hydrogen can recover the energy later, for example by generating power and heat in fuel cells, blending hydrogen into the natural gas pipeline network or converted into synthesis gas.
"Should I sell the energy or convert it?" Their study, published in the renowned journal Nature Energy, shows that one factor is essential in the current market environments in Germany and Texas: The concept requires facilities that can be used both to feed power into the grid and to produce hydrogen. These combined systems, which are not yet in common use, must respond optimally to the wide fluctuations in wind power output and prices in power markets. "The operator can decide at any time: should I sell the energy or convert it," explains Stefan Reichelstein.
Production in some industries would already be profitable today "For medium and small-scale production, these facilities would already be profitable now," says Reichelstein. Production on that scale is appropriate for the metal and electronics industries, for example - or for powering a fleet of forklift trucks on a factory site. The economists predict that the process will also be competitive in large-scale production by 2030, for example for refineries, ammonia production, assuming that wind power and electrolyte costs maintain the downward trajectory seen in recent years. "The use in fuel cells for trucks and ships is also conceivable", says Glenk.
Energy sources for intelligent infrastructure "Power-to-gas offers new business models for companies in various industries," says Glenk. "Power utilities can become hydrogen suppliers for industry. Manufacturers, meanwhile, can get involved in the decentralized power generation business with their own combined facilities. In that way, we can develop a climate-friendly and intelligent infrastructure that optimally links power generation, production and transport."
Research Report: Economics of converting renewable power to hydrogen
Using E. coli to create bioproducts, like biodiesel, in a cost-effective manner Baton Rouge LA (SPX) Feb 25, 2019 Who knew a potentially deadly bacteria could be used for good? LSU Mechanical Engineering graduate student Tatiana Mello of Piracicaba, Brazil, is currently working on genetically engineering and optimizing E. coli bacteria to produce bioproducts, like biodiesel, in a cost-effective manner. This undertaking has garnered the attention of many in the engineering and biology fields and has also given her the opportunity to speak about her research at the recent National Biodiesel Conference and Expo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |