How well electron transport works in furfural biogas by Staff Writers Washington DC (SPX) Sep 15, 2017
Furfural is a promising candidate in the quest for alternative biofuels. The combustion industries are very interested in what could become a potential new type of fuel derived from atmospheric-plasma treatment of biomass. But before the gas can be considered for use on a large scale, it is essential to understand its energy characteristics. Now, a Spanish team has published its findings on the gas's energy efficiency in EPJ D. Ana Lozano from the Institute of Fundamental Physics in Madrid, Spain, and colleagues studied an electron beam entering a cell filled with furfural gas molecules to study its scattering characteristics, providing the first accurate experimental evaluation of the effectiveness of the interaction between electron and gas particles - via electron scattering cross-section measurements - for selected electron beam impact energies. The authors applied a magnetic field along the direction of the electron beam entering a cell filled with furfural gas. They observed that the magnetic field converts any potential deflection due to scattering between the electrons and furfural gas molecules into an energy loss in the forward direction of the magnetic field. Further, the team used a device called a retarding field analyser to effectively discriminate between scattered and unscattered electrons, which allowed them to accurately measure the energy of transmitted electrons as a function of the furfural gas pressure in the scattering chamber. They then used these experimental results as input parameters to create a simulation of the transport of 10 million electrons with an initial energy of 10 eV through gaseous furfural. This led to the establishment of a benchmark evaluation of the total low-energy electron scattering cross-sections from furfural and energy loss estimates for selected energies (7, 10 and 20 eV).
Research Report: A. I. Lozano, K. Krupa, F. Ferreira da Silva, P. Limao-Vieira, F. Blanco, A. Munoz, D. B. Jones, M. J. Brunger and G. Garcia (2017), Low energy electron transport in furfural, European Physical Journal D, DOI 10.1140/epjd/e2017-80326-0
Washington DC (SPX) Sep 15, 2017 Converting fibrous plant waste, like corn stalks and wood shavings, into fermentable simple sugars for the production of biofuel is no simple process. Bacteria must break down tough leaves, stems and other cellulosic matter resistant to degradation to turn them into usable energy. Helping bacteria become more efficient in this process could result in more affordable biofuels for our gas ta ... read more Related Links Springer Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |