Light-driven reaction converts carbon dioxide into fuel by Staff Writers Durham NC (SPX) Feb 28, 2017
Duke University researchers have developed tiny nanoparticles that help convert carbon dioxide into methane using only ultraviolet light as an energy source. Having found a catalyst that can do this important chemistry using ultraviolet light, the team now hopes to develop a version that would run on natural sunlight, a potential boon to alternative energy. Chemists have long sought an efficient, light-driven catalyst to power this reaction, which could help reduce the growing levels of carbon dioxide in our atmosphere by converting it into methane, a key building block for many types of fuels. Not only are the rhodium nanoparticles made more efficient when illuminated by light, they have the advantage of strongly favoring the formation of methane rather than an equal mix of methane and undesirable side-products like carbon monoxide. This strong "selectivity" of the light-driven catalysis may also extend to other important chemical reactions, the researchers say. "The fact that you can use light to influence a specific reaction pathway is very exciting," said Jie Liu, the George B. Geller professor of chemistry at Duke University. "This discovery will really advance the understanding of catalysis." The paper appears online in Nature Communications. Despite being one of the rarest elements on Earth, rhodium plays a surprisingly important role in our everyday lives. Small amounts of the silvery grey metal are used to speed up or "catalyze" a number of key industrial processes, including those that make drugs, detergents and nitrogen fertilizer, and they even play a major role breaking down toxic pollutants in the catalytic converters of our cars. Rhodium accelerates these reactions with an added boost of energy, which usually comes in the form of heat because it is easily produced and absorbed. However, high temperatures also cause problems, like shortened catalyst lifetimes and the unwanted synthesis of undesired products. In the past two decades, scientists have explored new and useful ways that light can be used to add energy to bits of metal shrunk down to the nanoscale, a field called plasmonics. "Effectively, plasmonic metal nanoparticles act like little antennas that absorb visible or ultraviolet light very efficiently and can do a number of things like generate strong electric fields," said Henry Everitt, an adjunct professor of physics at Duke and senior research scientist at the Army's Aviation and Missile RD and E Center at Redstone Arsenal, AL. "For the last few years there has been a recognition that this property might be applied to catalysis." Xiao Zhang, a graduate student in Jie Liu's lab, synthesized rhodium nanocubes that were the optimal size for absorbing near-ultraviolet light. He then placed small amounts of the charcoal-colored nanoparticles into a reaction chamber and passed mixtures of carbon dioxide and hydrogen through the powdery material. When Zhang heated the nanoparticles to 300 degrees Celsius, the reaction generated an equal mix of methane and carbon monoxide, a poisonous gas. When he turned off the heat and instead illuminated them with a high-powered ultraviolet LED lamp, Zhang was not only surprised to find that carbon dioxide and hydrogen reacted at room temperature, but that the reaction almost exclusively produced methane. "We discovered that when we shine light on rhodium nanostructures, we can force the chemical reaction to go in one direction more than another," Everitt said. "So we get to choose how the reaction goes with light in a way that we can't do with heat." This selectivity - the ability to control the chemical reaction so that it generates the desired product with little or no side-products - is an important factor in determining the cost and feasibility of industrial-scale reactions, Zhang says. "If the reaction has only 50 percent selectivity, then the cost will be double what it would be if the selectively is nearly 100 percent," Zhang said. "And if the selectivity is very high, you can also save time and energy by not having to purify the product." Now the team plans to test whether their light-powered technique might drive other reactions that are currently catalyzed with heated rhodium metal. By tweaking the size of the rhodium nanoparticles, they also hope to develop a version of the catalyst that is powered by sunlight, creating a solar-powered reaction that could be integrated into renewable energy systems. "Our discovery of the unique way light can efficiently, selectively influence catalysis came as a result of an on-going collaboration between experimentalists and theorists," Liu said. "Professor Weitao Yang's group in the Duke chemistry department provided critical theoretical insights that helped us understand what was happening. This sort of analysis can be applied to many important chemical reactions, and we have only just begun to explore this exciting new approach to catalysis."
Research Report: "Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation," Xiao Zhang, Xueqian Li, Du Zhang, Neil Qiang Su, Weitao Yang, Henry O. Everitt and Jie Liu. Nature Communications, Feb. 23, 2017. DOI: 10.1038/ncomms14542
Ithaca NY (SPX) Feb 28, 2017 When Geoffrey Coates, a professor of chemistry and chemical biology at Cornell University, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used for packaging - for example, a 2-liter bottle or a take-out food container - actually gets recycled and re-used in a similar way? The answer, just 2 percent. Sadly, n ... read more Related Links Duke University Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |