Energy News  
BIO FUEL
Making xylitol and cellulose nanofibers from paper paste
by Staff Writers
Kobe, Japan (SPX) Mar 20, 2019

Larger-scale production using jar fermenters. Background image file only.

The ecological bio-production of xylitol and cellulose nanofibers using modified yeast cells, from material produced by the paper industry has been achieved by a Japanese research team. This discovery could contribute to the development of a greener and more sustainable society. The findings were published on March 4, in Green Chemistry.

The research was carried out by a group led by Assistant Professor Gregory Guirimand-Tanaka, Professor Tomohisa Hasunuma and Professor Akihiko Kondo from the Graduate School of Science, Technology and Innovation and the Engineering Biology Research Center of Kobe University.

In his effort to develop innovative processes to achieve a sustainable society, Professor Kondo has focused on a variety of bio-compounds such as xylitol, a highly valuable commodity chemical, which is widely used in both the food and pharmaceutical industries (for example, as a sugar substitute in chewing gum).

Professor Kondo's group is also interested in innovative nanomaterials such as cellulose nanofibers, which present huge economic potential due to the properties of nanocellulose (mechanical properties, film-forming properties, viscosity etc.), and significant applications in food, hygiene, absorbent, medical, cosmetic and pharmaceutical products.

The worldwide demand for both xylitol and cellulose nanofibers is constantly growing, and the cost and environmental impact of their industrial production remain very high.

The industrial production of xylitol and cellulose nanofibers from purified D-xylose and cellulose fibers respectively involve costly and polluting processes. In order to solve these issues and realize a sustainable and environmentally-conscious society, we must make use of renewable biomass such as paper paste (Kraft pulp) and develop innovative processes.

Biotechnological production of xylitol and cellulose nanofibers using Kraft pulp, deriving from the paper industry, could be an advantageous option, as this material is abundant, contains reasonable amounts (17%) of D-xylose, and can be converted into highly valuable commodity compounds and nanomaterials.

To release the D-xylose contained in Kraft pulp, we usually need to add a large amount of commercial enzymes (CE), which are very costly. Therefore, we decided to use microorganisms such as modified yeast, which is capable of producing these enzymes by itself, in order to reduce the amount of CE initially required. The modified yeast cells developed are carrying these enzymes directly on their own cell surface, and we call this strategy "cell surface display" technology.

In this study, xylitol and cellulose nanofibers were co-produced from Kraft pulp by using a modified strain of baker's yeast (Saccharomyces cerevisiae YPH499 strain) expressing three different enzymes (b-D-glucosidase (BGL), xylosidase (XYL) and xylanase (XYN)) co-displayed on the cell surface.

By using this strategy, we were not only able to produce xylitol and cellulose nanofibers, but also to considerably increase the purity of the cellulose itself and the cost efficiency of the process by reducing the amount of CE initially required (figure 1).

Last but not least, our team was able to successfully perform these experiments in larger volumes by using 2-liter jar fermenters, enabling us to further scale up bio-refinery industrial production of xylitol and cellulose nanofibers from Kraft pulp (figure 2).

Based on these findings, the team will continue to look for ways to increase the sustainable bio-production of xylitol and cellulose nanofibers through genetic engineering of yeast cells.

Research paper


Related Links
Kobe University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Converting biomass by applying mechanical force
Munster, Germany (SPX) Mar 15, 2019
One of the greatest global challenges is the efficient use of renewable sources in order to meet the increasing demand for energy and feedstock chemicals in the future. In this context, biomass is a promising alternative to existing fossil sources such as coal or oil. Cellulose plays a decisive role here because it accounts for the largest fraction of the natural carbon storage. These reservoirs are crucial for the production of both fuels and basic chemicals. In order to utilize its full potentia ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Jamaica leads in Richard Branson-backed plan for a Caribbean climate revolution

New record: Over 16 percent efficiency for single-junction organic solar cells

Mixed-cation perovskite solar cells in space

Light from an exotic crystal semiconductor could lead to better solar cells

BIO FUEL
New York State Govt Announces $250M Westchester Clean Energy Action Plan

Researchers create hydrogen fuel from seawater

Eni eyes turning non-recyclable waste to hydrogen

Venezuela's oil production plunged in February, OPEC says

BIO FUEL
Climate campaigners take France to court

Norway MPs want Nobel for student climate campaigner Greta

Global youth climate strike could be 'milestone' moment

Can we tweak marine chemistry to help stave off climate change?

BIO FUEL
Advances point the way to smaller, safer batteries

Fusion science and astronomy collaboration enables investigation of the origin of heavy elements

Testing space batteries to destruction for cleaner skies

Powering devices - with a desk lamp?

BIO FUEL
Converting biomass by applying mechanical force

Engineered microbe may be key to producing plastic from plants

Turning algae into fuel

Capturing bacteria that eat and breathe electricity

BIO FUEL
Lyft revs up for an IPO seeking to raise $2.4bn

German lawmakers raise hurdle for diesel bans

First autonomous driving shuttle bus for all weather conditions

Forget flying carpets, flying taxis are coming your way

BIO FUEL
Houston, we're here to help the farmers

'Meatless Mondays' on horizon for New York City schools

Pesticides affect bumblebee genes; scientists call for stricter regulations

Duque asks court to allow banned weedkiller on cocaine

BIO FUEL
Materials could delay frost up to 300 times longer than existing anti-icing coatings

Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

Spontaneous spin polarization demonstrated in a two-dimensional material

Researchers turn liquid metal into a plasma









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.