Methane to syngas catalyst: two for the price of one by Staff Writers Sapporo, Japan (SPX) Sep 06, 2018
Hokkaido University researchers have created an improved catalyst for the conversion of methane gas into syngas, a precursor for liquid fuels and fundamental chemicals. Syngas, also known as synthesis gas, is a mixture made primarily of carbon monoxide and hydrogen and is used to manufacture polymers, pharmaceuticals, and synthetic petroleum. It is made by exposing methane to water vapor at 900 C or higher, making the process costly. The partial oxidation of methane for syngas synthesis is more economical than using steam but there have been issues with the catalysts used for this process. Noble metal catalysts, such as rhodium and platinum, are better and work at lower temperatures than base metal catalysts, such as cobalt and nickel, but they are also more expensive. The cheaper base metal catalysts require temperatures above 800C, exceeding the temperature range for industrial stainless-steel reactors. They are also deactivated during the reaction by re-oxidation and the accumulation of coke, a by-product of the process, making them costly in the long-term. Assistant Professor Hirokazu Kobayashi, Professor Atsushi Fukuoka, and postdoctoral fellow Yuhui Hou, working in Hokkaido University's Institute for Catalysis, succeeded in preparing a catalyst that combines the properties of both noble and base metals. Their catalyst overcomes challenges faced by previous studies in adding a small enough amount of noble metal to the base metal catalyst that it can still work at lower temperatures. In the study published in Communications Chemistry, the team successfully generated tiny particles of the base metal cobalt by dispersing them onto a mineral deposit called zeolite. They then added a minute amount of noble metal rhodium atoms onto the cobalt particles. The new, combined catalyst successfully converted 86% of methane to syngas at 650C while maintaining its activity for at least 50 hours. The reaction oxidizes cobalt to cobalt oxide, which is nearly inactive. But because the rhodium is contained, the noble metal generates hydrogen atoms from methane or hydrogen molecules. The hydrogen atoms spill over onto the supporting material, and the spillover hydrogen turns the cobalt oxide back into cobalt. The cobalt can then continue to act as a catalyst. The high dispersion of cobalt on zeolite also prevented the formation of coke during the reaction. Methane has drawn attention as a source of clean energy as it produces only a half amount of CO2 compared to petroleum when burned. Moreover, increased shale gas mining has made methane a more accessible resource. "Our catalyst can efficiently convert methane to syngas at 650C, a much lower temperature than in conventional methods. This could lead to more efficient use of methane and contribute to the development of a low-carbon society," says Hirokazu Kobayashi.
Breakthrough could see bacteria used as cell factories to produce biofuels Kent UK (SPX) Aug 30, 2018 A new technique for manipulating small cell structures for use in a range of biotechnical applications including the production of biofuels and vaccines has been developed by a team of scientists led by the University of Kent. The researchers did this by creating an improved system to allow for the synthesis of nano-reactors within cells that can be used to help convert sugar into fuel. The same technology can be used to coat nano-particles with proteins so that they can be used to generate vaccin ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |