|
. | . |
|
by Staff Writers Barcelona, Spain (SPX) Mar 22, 2013
Researchers at the UAB's Institute of Environmental Science and Technology (ICTA-UAB) and the Institute of Marine Sciences (ICM-CSIC), have analysed the potential of different species of microalgae for producing biodiesel, comparing their growth, production of biomass and the quantity of lipids per cell (essential for obtaining fuel). Their study shows that one type of marine algae that has received little attention till now - dinoflagellate microalgae - is highly suitable for cultivation with the aim of producing biodiesel. The scientists carried out the whole production process in exterior cultures, in natural conditions, without artificial light or temperature control, in cultivation conditions with low energy costs and subject to seasonal fluctuations. Detailed analysis of all costs over 4 years gives promising results: microalgae cultures are close to producing biodiesel profitably even in uncontrolled environmental conditions. "If we make simple adjustments to completely optimise the process, biodiesel obtained by cultivating these marine microalgae could be an option for energy supplies to towns near the sea", points out Sergio Rossi, an ICTA researcher at the UAB. Among these adjustments, scientists highlight the possibility of reusing leftover organic pulp (the glycerol and protein pulp that is not converted into biodiesel) and using air pumps and more efficient cultivation materials. Though similar studies have been done on other alga species, dinoflagellate microalgae have shown themselves to be a very promising group that stands out from the rest. Moreover, these microalgae are autochthonous to the Mediterranean, so they would present no environmental threat in the event of leakage.
Third-generation biodiesel The possibility of creating energy from hydrocarbons extracted from organisms like marine phytoplankton, the so-called third-generation biodiesel, has several advantages. Firstly, algae offer the same production levels while taking up only between 4 and 7 per cent of the area occupied by crops on land, thanks to their high concentration of energy per cell. Secondly, they do not need fresh water, as sea water is sufficient, which makes them viable even in deserts or arid areas near the coast. Finally, marine algae are not, a priori, sources of food for human consumption, which avoids the ethical problem of monoculture to provide fuel rather than food. This study was led by scientists from the UAB's Institute of Environmental Science and Technology and involved researchers from the Department of Marine and Oceanographic Biology of the Institute of Marine Sciences of the CSIC, from the UAB spin-off Inedit Innovacio SL, in the UAB Research Park, and from the SOSTENIPRA research group, of the UAB's Department of Chemical Engineering.
Related Links Universitat Autonoma de Barcelona Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |