Energy News  
BIO FUEL
Modified microalgae converts sunlight into valuable medicine
by Staff Writers
Copenhagen, Denmark (SPX) May 24, 2016


The microalgae cultures are able to grow rapidly using waste water and light. Image courtesy Department of Plant and Environmental Sciences, University of Copenhagen. For a larger version of this image please go here.

Researchers from Copenhagen Plant Science Centre at University of Copenhagen have succeeded in manipulating a strain of microalgae to form complex molecules to an unprecedented extent. This may pave the way for an efficient, inexpensive and environmentally friendly method of producing a variety of chemicals, such as pharmaceutical compounds.

"So basically, the idea is that we hijack a portion of the energy produced by the microalgae from their photosynthetic systems. By redirecting that energy to a genetically modified part of the cell capable of producing various complex chemical materials, we induce the light driven biosynthesis of these compounds," says Post Doc Agnieszka Janina Zygadlo Nielsen, who along with colleagues Post Doc Thiyagarajan Gnanasekaran and PhD student Artur Jacek Wlodarczyk has been the main researcher behind the study.

The researchers have as such modified microalgae genetically to become small chemical factories with a build in power supply. According to the research team's study, this basically allows sunlight being transformed into everything ranging from chemotherapy or bioplastics to valuable flavor and fragrance compounds.

As Agnieszka Janina Zygadlo Nielsen describes, the problem with many of these substances today is namely that they are extremely expensive and difficult to make, and therefore produced only in small quantities in the medicinal plants.

"A cancer drug like Taxol for instance is made from old yew trees, which naturally produce the substance in their bark. It is a cumbersome process which results in expensive treatments. If we let the microalgae run the production this problem could be obsolete," she explains.

Sustainable production from wastewater
Thiyagarajan Gnanasekaran clarifies that the method can be run sustainably and continuously, and that this is what makes it even more spectacular compared to present methods.

"Our study shows that it is possible to optimize the enzymatic processes in the cells using only sunlight, water and CO2 by growing them in transparent plastic bags in a greenhouse. Theoretically, the water could be replaced with sewage water, which could make the process run on entirely renewable energy and nutrient sources. Recycling wastewater from industry and cities to produce valuable substances would surely be positive," he points out.

Agnieszka Janina Zygadlo Nielsen adds: "If we can create a closed system that produces the valued chemicals from water, sunlight and CO2, it would be a fully competitive method compared to the ones used today, where it is primarily extracted from plants or yeast and E. coli bacteria producing the substances. In theory it should be cheaper on the long run to use our method than adding the large quantities of sugar that the conventional yeast and E.coli cultures amongst other things need to function."

A method with revolutionizing perspectives
However, the research team emphasizes that the method using genetically modified microalgae has its limitations at present time. As Thiyagarajan Gnanasekaran points out, the microalgae use much of the harnessed sunlight to keep their own metabolic processes running:

"It is difficult to produce large quantities of the desired compounds in microalgae because they have to use a large amount of the produced energy for themselves, since they are fully photosynthetic organisms. Exactly for this reason, it makes good sense to have them produce the particularly valuable substances which are cost effective to produce in relatively small quantities at a time, as for instance medicine."

However, according to the team the expanding methods and genetic tools for microalgae are likely to overcome these limitations within near future.

Research paper: "Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Faculty of Science - University of Copenhagen
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Alkol Biotech sells large batch of sugarcane bagasse for 2G ethanol testing
London, UK (SPX) May 18, 2016
Alkol Biotech sold 500 kilos of EUnergyCane sugarcane bagasse for scientific cellulosic ethanol technology testing. The client is a leading 2G ethanol technology producer from Europe, and its purpose is being able to produce real results to sugarcane-based ethanol producers from Brazil and other countries. In Brazil alone there are over 380 sugarcane mills. However, most of those mills use ... read more


BIO FUEL
Kumenan mega solar plant commissioned in Japan

Solar power getting cheaper in the United States

Private Academy in Puerto Rico Selects KYOCERA Solar for Long-Term Energy Savings

Sunrock Investments reaches milestone: over 50 Euro million of solar assets

BIO FUEL
Alkol Biotech sells large batch of sugarcane bagasse for 2G ethanol testing

Industry Weighs in on Green Aviation Tech

Berkeley Lab scientists brew jet fuel in 1-pot recipe

UNT researchers discover potential new paths for plant-based bioproducts

BIO FUEL
Argonne coating shows surprising potential to improve reliability in wind power

SeaPlanner is Awarded Contract for Rampion Offshore Wind Farm

British share of renewables setting records

DNV GL-led project gives green light for wind-powered oil recovery

BIO FUEL
Technique improves the efficacy of fuel cells

Enhancing lab-on-a-chip peristalsis with electro-osmosis

Researchers integrate diamond/boron layers for high-power devices

Speedy ion conduction clears road for advanced energy devices

BIO FUEL
Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

EU court overturns carbon market free quotas

Global leaders agree to set price on carbon pollution

BIO FUEL
Fiat Chrysler suspected of emissions cheating

Ex-Googlers rev up plan for self-driving trucks

Google patent glues pedestrians to self-driving cars

Tesla raising cash to fund accelerated production

BIO FUEL
Illinois River water quality improvement linked to more efficient corn production

UN panel says weedkiller 'unlikely' to cause cancer

Researchers help dairy farmers cool cows more efficiently, use less water

Nation's beekeepers lost 44 percent of bees in 2015-16

BIO FUEL
Combining nanotextures with Leidenfrost effect for water repellency

Printing metal in midair

Dynamic dazzle distorts speed

Scientists create 'rewritable magnetic charge ice'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.