New polymer additive could revolutionize plastics recycling by Staff Writers Ithaca NY (SPX) Feb 28, 2017
When Geoffrey Coates, a professor of chemistry and chemical biology at Cornell University, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used for packaging - for example, a 2-liter bottle or a take-out food container - actually gets recycled and re-used in a similar way? The answer, just 2 percent. Sadly, nearly a third is leaked into the environment, around 14 percent is used in incineration and/or energy recovery, and a whopping 40 percent winds up in landfills. One of the problems: Polyethylene (PE) and polypropylene (PP), which account for two-thirds of the world's plastics, have different chemical structures and thus cannot be repurposed together. Or, at least, an efficient technology to meld these two materials into one hasn't been available in the 60 years they've both been on the market. That could change with a discovery out of Coates' lab. He and his group have collaborated with a group from the University of Minnesota to develop a multiblock polymer that, when added in small measure to a mix of the two otherwise incompatible materials, create a new and mechanically tough polymer. The two groups' work is detailed in a paper, "Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers," published online Feb. 23 in Science. James Eagan, a postdoctoral researcher in Coates' group, is lead author of the paper. Other collaborators included researcher Anne LaPointe and former visiting scientist Rocco DiGirolamo. Scientists for years have tried to develop a polymer that does what Coates, LaPointe and Eagan have achieved. By adding a miniscule amount of their tetrablock (four-block) polymer - with alternating polyethylene and polypropylene segments - the resultant material has strength superior to diblock (two-block) polymers they tested. In their test, two strips of plastic were welded together using different multi-block polymers as adhesives, then mechanically pulled apart. While the welds made with diblock polymers failed relatively quickly, the weld made of the group's tetrablock additive held so well that the plastic strips broke instead. "People have done things like this before," Coates said, "but they'll typically put 10 percent of a soft material, so you don't get the nice plastic properties, you get something that's not quite as good as the original material." "What's exciting about this," he said, "is we can go to as low as 1 percent of our additive, and you get a plastic alloy that really has super-great properties." Not only does this tetrablock polymer show promise for improving recycling, Eagan said, it could spawn a whole new class of mechanically tough polymer blends. "If you could make a milk jug with 30 percent less material because it's mechanically better, think of the sustainability of that," he said. "You're using less plastic, less oil, you have less stuff to recycle, you have a lighter product that uses less fossil fuel to move it."
Durham, N.C. (UPI) Feb 23, 2017 Scientists at Duke University have developed a new method for catalyzing the conversion of carbon dioxide into methane, a component of many alternative fuels. The reaction is bolstered by the presence of rhodium nanoparticles and ultraviolet light. Rhodium is known to accelerate, or catalyze, a variety of reactions used for industrial processes, but the energy boost offered by the rare ... read more Related Links Cornell University Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |