Energy News  
BIO FUEL
Next step on the path towards an efficient biofuel cell
by Staff Writers
Bochum, Germany (SPX) Nov 15, 2018

The researchers carried out biofuel cell tests in this electrochemical cell.

Fuel cells that work with the enzyme hydrogenase are, in principle, just as efficient as those that contain the expensive precious metal platinum as a catalyst. However, the enzymes need an aqueous environment, which makes it difficult for the starting material for the reaction - hydrogen - to reach the enzyme-loaded electrode.

Researchers solved this problem by combining previously developed concepts for packaging the enzymes with gas diffusion electrode technology. The system developed in this way achieved significantly higher current densities than previously achieved with hydrogenase fuel cells.

In the journal Nature Communications, a team from the Center for Electrochemical Sciences at Ruhr-Universitat Bochum, together with colleagues from the Max Planck Institute for Chemical Energy Conversion in Mulheim an der Ruhr and the University of Lisbon, describes how they developed and tested the electrodes. The article was published on 9 November 2018.

Advantages and disadvantages of gas diffusion electrodes
Gas diffusion electrodes can efficiently transport gaseous raw materials for a chemical reaction to the electrode surface with the catalyst. They have already been tested in various systems, but the catalyst was electrically wired directly to the electrode surface.

"In this type of system, only a single layer of enzyme can be applied to the electrode, which limits the flow of current," says Bochum chemist Dr. Adrian Ruff, describing a disadvantage. In addition, the enzymes were not protected from harmful environmental influences. In the case of hydrogenase, however, this is necessary because it is unstable in the presence of oxygen.

Redox polymer as an oxygen protection shield
In recent years, the chemists from the Center for Electrochemical Sciences in Bochum have developed a redox polymer in which they can embed hydrogenases and protect them from oxygen. Previously, however, they had only tested this polymer matrix on flat electrodes, not on porous three-dimensional structures such as those employed in gas diffusion electrodes.

"The porous structures offer a large surface area and thus enable a high enzyme load," says Professor Wolfgang Schuhmann, Head of the Center for Electrochemical Sciences. "But it was not clear whether the oxygen protection shield on these structures would work and whether the system would then still be gas-permeable."

Applying enzymes to electrodes
One of the problems with the manufacturing process is that the electrodes are hydrophobic, i.e. water-repellent, while the enzymes are hydrophilic, i.e. water-friendly. The two surfaces therefore tend to repel each other. For this reason, the researchers first applied an adhesive yet electron transferring layer to the electrode surface, onto which they then applied the polymer matrix with the enzyme in a second step.

"We specifically synthesised a polymer matrix with an optimal balance of hydrophilic and hydrophobic properties," explains Adrian Ruff. "This was the only way to achieve stable films with good catalyst loading."

The electrodes constructed in this way were still permeable to gas. The tests also showed that the polymer matrix also functions as an oxygen shield for porous three-dimensional electrodes. The scientists used the system to achieve a current density of eight milliamperes per square centimetre. Earlier bioanodes with polymer and hydrogenase only reached one milliampere per square centimetre.

Functional biofuel cell
The team combined the bioanode described above with a biocathode and showed that a functional fuel cell can be produced in this way. It achieved a power density of up to 3.6 milliwatts per square centimetre and an open circuit voltage of 1.13 volts, which is just below the theoretical maximum of 1.23 volts.

Research paper


Related Links
Ruhr-University Bochum
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Purple bacteria 'batteries' turn sewage into clean energy
Washington DC (SPX) Nov 14, 2018
You've flushed something valuable down the toilet today. Organic compounds in household sewage and industrial wastewater are a rich potential source of energy, bioplastics and even proteins for animal feed - but with no efficient extraction method, treatment plants discard them as contaminants. Now researchers have found an environmentally-friendly and cost-effective solution. Published in Frontiers in Energy Research, their study is the first to show that purple phototrophic bacteria - whic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
High-performance solar cells: Physicists grow stable perovskite layers

Stanford researchers develop a rooftop device that can make solar power and cool buildings

New records in perovskite-silicon tandem solar cells through improved light management

See-through film rejects 70 percent of incoming solar heat

BIO FUEL
Oil price climbs after Saudi Arabia announces production cuts

Crude oil futures rise, but lack of new OPEC cuts curbs stronger recovery

OPEC, non-OPEC see 2019 supply exceeding demand, but plan no cuts

Colombia's Duque calls for action against Venezuelan 'dictatorship'

BIO FUEL
Resources giants ramp up calls for Australia carbon tax

Newly-elected Native American vows climate change fight

What happened in the past when the climate changed?

Perilous times for Australia wildlife amid severe drought

BIO FUEL
Materials scientist creates fabric alternative to batteries for wearable devices

From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering

Extending the life of low-cost, compact, lightweight batteries

Batteryless smart devices closer to reality

BIO FUEL
Purple bacteria 'batteries' turn sewage into clean energy

New system opens the door to transforming CO2 into industrial fuels

A bionic mushroom that generates electricity

Graphene takes a step towards renewable fuel

BIO FUEL
German court orders diesel bans in Cologne, Bonn

Electriq~Global launches water-based fuel to power electric vehicles

Carbon-busting system to launch at massive Las Vegas auto week

Driverless vehicle experts get hands on experience in South Australia

BIO FUEL
In China's Himalayas, a wine 'flying above the clouds'

Tommorow's population will be larger, heavier and eat more

'Potato gene' reveals how ancient Andeans adapted to starchy diet

US votes good for farm animals, not wild salmon

BIO FUEL
Thermal testing of the magnetometer boom

Flying focus: Controlling lasers through time and space

A two-atom quantum duet

Flow units: Dynamic defects in metallic glasses









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.