Energy News  
BIO FUEL
Notre Dame researchers developing renewable energy approach for producing ammonia
by Staff Writers
South Bend IN (SPX) Apr 05, 2018

illustration only

Researchers at the University of Notre Dame are developing a renewable energy approach for synthesizing ammonia, an essential component of fertilizers that support the world's food production needs. The Haber-Bosch process developed in the early 1900s for producing ammonia relies on non-renewable fossil fuels and has limited applications for only large, centralized chemical plants.

The new process, published in Nature Catalysis, utilizes a plasma - an ionized gas - in combination with non-noble metal catalysts to generate ammonia at much milder conditions than is possible with Haber-Bosch. The energy in the plasma excites nitrogen molecules, one of the two components that go into making ammonia, allowing them to react more readily on the catalysts.

Because the energy for the reaction comes from the plasma rather than high heat and intense pressure, the process can be carried out at small scale. This makes the new process well-suited for use with intermittent renewable energy sources and for distributed ammonia production.

"Plasmas have been considered by many as a way to make ammonia that is not dependent on fossil fuels and had the potential to be applied in a less centralized way," said William Schneider, H. Clifford and Evelyn A. Brosey Professor of Engineering, affiliated member of ND Energy and co-author of the study.

"The real challenge has been to find the right combination of plasma and catalyst. By combining molecular models with results in the laboratory, we were able to focus in on combinations that had never been considered before."

The research team led by Schneider; David Go, Rooney Family Associate Professor of Engineering in aerospace and mechanical engineering; and Jason Hicks, associate professor of chemical and biomolecular engineering, discovered that because the nitrogen molecules are activated by the plasma, the requirements on the metal catalysts are less stringent, allowing less expensive materials to be used throughout the process.

This approach overcomes fundamental limits on the heat-driven Haber-Bosch process, allowing the reaction to be carried out at Haber-Bosch rates at much milder conditions.

"The goal of our work was to develop an alternative approach to making ammonia, but the insights that have come from this collaboration between our research groups can be applied to other difficult chemical processes, such as converting carbon dioxide into a less harmful and more useful product. As we continue studying plasma-ammonia synthesis, we will also consider how else plasma and catalysts could benefit other chemical transformations," said Hicks.


Related Links
University of Notre Dame
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
New insights into how cellulose is built could indicate how to break it
University Park PA (SPX) Mar 29, 2018
A comprehensive look at how plants build cellulose, the primary building block of the walls of most plant cells that is used in a wide variety of manmade materials, could have important implications for its use in biofuels. Researchers at Penn State have identified the major steps in the process as well as the tools used by plant cells to create cellulose, including proteins that transport critical components to the location where cellulose is made. A paper describing the study appears online the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Photosynthesis uses vibrations as 'traffic signals'

DuPont Photovoltaic Solutions Inks Collaboration with Envision

Kesterite solar cells: Germanium promises better opto-electronic properties than tin

Hybrid plasmonic and pyroelectric harvesting of light fluctuations

BIO FUEL
Oil prices bounce back on signs of balance

U.S. gas prices up, and expected to keep rising

EPA says Obama-era fuel guidelines were politically charged

Russia expects support for Nord Stream 2 from European partners

BIO FUEL
Canada to miss 2020 climate target: audit

New climate model developed by Russian and German scientists

Dead tress across Mongolian lava field offer clues to past droughts

Cilmatologists render drought predictions that help avert famine

BIO FUEL
Pi-electron conjugation unit enables sustainable battery technology

Engineers turn plastic insulator into heat conductor

A new way to find better battery materials

Researchers charge ahead to develop better batteries

BIO FUEL
Sewage sludge leads to biofuels breakthrough

New insights into how cellulose is built could indicate how to break it

Wood pellets: Renewable, but not carbon neutral

Insects could help us find new yeasts for big business

BIO FUEL
US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

BMW sued in US over diesel emissions

In a first, EU to review emissions to heavy-duty vehicles

BIO FUEL
El Nino can affect up to two-thirds of the world's harvests

Breakthrough in battle against rice blast

Agriculture initiated by indigenous peoples, not Fertile Crescent migration

Scientists to publish first-ever land health report

BIO FUEL
Microsoft shakes up ranks to shoot for the cloud

Berkeley Lab scientists print all-liquid 3-D structures

What a mesh

Researchers develop nanoparticle films for high-density data storage









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.