Energy News  
BIO FUEL
ORNL invents tougher plastic with 50 percent renewable content
by Staff Writers
Oak Ridge TN (SPX) Mar 25, 2016


ORNL's tough new plastic is made with 50 percent renewable content from biomass. Image courtesy Oak Ridge National Laboratory, U.S. Dept. of Energy; conceptual art by Mark Robbins. For a larger version of this image please go here.

Your car's bumper is probably made of a moldable thermoplastic polymer called ABS, shorthand for its acrylonitrile, butadiene and styrene components. Light, strong and tough, it is also the stuff of ventilation pipes, protective headgear, kitchen appliances, Lego bricks and many other consumer products. Useful as it is, one of its drawbacks is that it is made using chemicals derived from petroleum.

Now, researchers at the Department of Energy's Oak Ridge National Laboratory have made a better thermoplastic by replacing styrene with lignin, a brittle, rigid polymer that, with cellulose, forms the woody cell walls of plants. In doing so, they have invented a solvent-free production process that interconnects equal parts of nanoscale lignin dispersed in a synthetic rubber matrix to produce a meltable, moldable, ductile material that's at least ten times tougher than ABS.

The resulting thermoplastic - called ABL for acrylonitrile, butadiene, lignin - is recyclable, as it can be melted three times and still perform well. The results, published in the journal Advanced Functional Materials, may bring cleaner, cheaper raw materials to diverse manufacturers.

"The new ORNL thermoplastic has better performance than commodity plastics like ABS," said senior author Amit Naskar in ORNL's Materials Science and Technology Division, who along with co-inventor Chau Tran has filed a patent application for the process to make the new material. "We can call it a green product because 50 percent of its content is renewable, and technology to enable its commercial exploitation would reduce the need for petrochemicals."

The technology could make use of the lignin-rich biomass byproduct stream from biorefineries and pulp and paper mills. With the prices of natural gas and oil dropping, renewable fuels can't compete with fossil fuels, so biorefineries are exploring options for developing other economically viable products.

Among cellulose, hemicellulose and lignin, the major structural constituents of plants, lignin is the most commercially underutilized. The ORNL study aimed to use it to produce, with an eye toward commercialization, a renewable thermoplastic with properties rivaling those of current petroleum-derived alternatives.

To produce an energy-efficient method of synthesizing and extruding high-performance thermoplastic elastomers based on lignin, the ORNL team needed to answer several questions: Can variations in lignin feedstocks be overcome to make a product with superior performance? Can lignin integrate into soft polymer matrices? Can the chemistry and physics of lignin-derived polymers be understood to enable better control of their properties? Can the process to produce lignin-derived polymers be engineered?

"Lignin is a very brittle natural polymer, so it needs to be toughened," explained Naskar, leader of ORNL's Carbon and Composites group. A major goal of the group is producing industrial polymers that are strong and tough enough to be deformed without fracturing. "We need to chemically combine soft matter with lignin. That soft matrix would be ductile so that it can be malleable or stretchable. Very rigid lignin segments would offer resistance to deformation and thus provide stiffness."

All lignins are not equal in terms of heat stability. To determine what type would make the best thermoplastic feedstock, the scientists evaluated lignin from wheat straw, softwoods like pine and hardwoods like oak. They found hardwood lignin is the most thermally stable, and some types of softwood lignins are also melt-stable.

Next, the researchers needed to couple the lignin with soft matter. Chemists typically accomplish this by synthesizing polymers in the presence of solvents. Because lignin and a synthetic rubber containing acrylonitrile and butadiene, called nitrile rubber, both have chemical groups in which electrons are unequally distributed and therefore likely to interact, Naskar and Chau Tran (who performed melt-mixing and characterization experiments) instead tried to couple the two in a melted phase without solvents.

In a heated chamber with two rotors, the researchers "kneaded" a molten mix of equal parts powdered lignin and nitrile rubber. During mixing, lignin agglomerates broke into interpenetrating layers or sheets of 10 to 200 nanometers that dispersed well in and interacted with the rubber.

Without the proper selection of a soft matrix and mixing conditions, lignin agglomerates are at least 10 times larger than those obtained with the ORNL process. The product that formed had properties of neither lignin nor rubber, but something in between, with a combination of lignin's stiffness and nitrile rubber's elasticity.

By altering the acrylonitrile amounts in the soft matrix, the researchers hoped to improve the material's mechanical properties further. They tried 33, 41 and 51 percent acrylonitrile and found 41 percent gave an optimal balance between toughness and stiffness.

Next, the researchers wanted to find out if controlling the processing conditions could improve the performance of their polymer alloy. For example, 33 percent acrylonitrile content produced a material that was stretchy but not strong, behaving more like rubber than plastic.

At higher proportions of acrylonitrile, the researchers saw the materials strengthen because of the efficient interaction between the components. They also wanted to know at what temperature the components should be mixed to optimize the material properties. They found heating components between 140 and 160 degrees Celsius formed the desired hybrid phase.

Using resources at ORNL including the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility, the scientists analyzed the morphologies of the blends. Scanning electron microscopy, performed by Chau Tran, explored the surfaces of the materials.

Jihua Chen and Tran characterized soft matter phases using transmission electron microscopy, placing a thin slice of material in the path of an electron beam to reveal structure through contrast differences in the lignin and rubber phases. Small-angle x-ray scattering by Jong Keum revealed repeated clusters of certain domain or layer sizes. Fourier transform infrared spectroscopy identified chemical functional groups and their interactions.

Future studies will explore different feedstocks, particularly those from biorefineries, and correlations among processing conditions, material structure and performance. Investigations are also planned to study the performance of ORNL's new thermoplastic in carbon-fiber-reinforced composites.

"More renewable materials will probably be used in the future," Naskar said. "I'm glad that we could continue work in renewable materials, not only for automotive applications but even for commodity usage."

Research paper: "A New Class of Renewable Thermoplastics with Extraordinary Performance from Nanostructured Lignin-Elastomers."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Lockheed and Concord Blue to build new bioenergy facility in Germany
Herten, Germany (SPX) Mar 23, 2016
Five thousand homes and businesses in Herten, Germany, will soon benefit from a clean, renewable energy source as Lockheed Martin and Concord Blue begin phase two of a new power generation facility that will transform waste into energy. Under phase two, Concord Blue has awarded Lockheed Martin Energy a $43 million contract to proceed with all engineering, procurement and construction of the 5 me ... read more


BIO FUEL
Australia invests $760 million in technologies to fight climate change

Lockheed Martin forms energy group

Industry tightens screws on solar panel safety

Ingeteam Test Labs join Intertek's global SATELLITE program

BIO FUEL
The flexible way to greater energy yield

Smaller, cheaper microbial fuel cells turn urine into electricity

Generating electricity with tomato waste

Lockheed and Concord Blue to build new bioenergy facility in Germany

BIO FUEL
Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

BIO FUEL
Engineers adapt laser method to create micro energy units

Pumping up energy storage with metal oxides

Could bread mold build a better rechargeable battery?

Burning like the Sun

BIO FUEL
Human impact forms 'striking new pattern' in Earth's global energy flow

Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

BIO FUEL
US unveils emergency braking deal with automakers

Industry calls for fast lane for self-driving cars

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

BIO FUEL
Sorghum: Not so ho-hum

French MPs slash 'Nutella tax' after Indonesia, Malaysia protest

Hindu cow activists drink pesticide in India, one dies

Mongolia herders face disaster: Red Cross

BIO FUEL
Uncovering bacterial role in platinum formation

'Invulnerable' coatings for cutting tools from gas

Detecting radioactive material from a remote distance

New way to control particle motions on 2-D materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.