Energy News  
BIO FUEL
Patented bioelectrodes have electrifying taste for waste
by Staff Writers
East Lansing MI (SPX) Aug 05, 2016


Gemma Reguera's patented bioelectrodes have an electrifying taste for waste - and they're ready to be scaled up. Image courtesy Kurt Stepnitz. For a larger version of this image please go here.

New research at Michigan State University and published in the current issue of Nature Communications shows how Geobacter bacteria grow as films on electrodes and generate electricity - a process that's ready to be scaled up to industrial levels.

The thick biofilm, a gelatin microbial dynamo of sorts, is a combination of cells loaded with cytochromes, metal-based proteins, and pili, hairlike protein filaments discovered and patented by MSU's Gemma Reguera, associate professor of microbiology.

The biofilms are comparable to an electrical grid. Each cell is a power plant, generating electrical discharges that are delivered to the underlying electrode using a network of cytochromes and pili.

The cytochromes are the transformers and towers supplying electricity to the city. The pili represent the sparse-but-mighty powerlines that connect the towers, even those far away from the power plant, to the grid.

Cytochromes and pili work together for shorter ranges - the first 10 layers of cells or so closest to the electrode. As more cells stack on the electrode, the efficiency of the cytochrome as electron carrier diminishes, and the pili do all of the work - discharging electrons 1,000 times faster than normal.

"The pili do all of the work after the first 10 layers, and allow the cells to continue to grow on the electrode, sometimes beyond 200 cell layers, while generating electricity," said Reguera, who co-published the paper with MSU graduate student Rebecca Steidl and MSU postdoctoral student Sanela Lampa-Pastirk, who work in Reguera's lab.

"This is the first study to show how electrons can travel such long distances across thick biofilms; the pili are truly like powerlines, at the nanoscale."

The cytochromes lose their transfer speed once they get farther away. Without the wires, you can't continue to grow the biofilm on the electrode, she added.

The methodical approach to dissect the contribution and interactions between the cytochromes and the pili was the key to this discovery.

The researchers used a genetic approach to eliminate key electron carriers in the biofilms, cytochromes and conductive pili, and studied the effect of the mutations in the growth of the biofilm and ability to generate electricity. They also constructed a mutant that produced pili with reduced conductivity.

"We used the mutants to grow biofilms of precise thickness and capacity to produce electricity," Reguera said. "This information allows us to reconstruct the paths - cytochromes or pili - used by the cells to discharge electrons across the biofilm and to the underlying electrode."

How the biofilm is mechanistically stratified as it grows in thickness on the electrode without compromising electricity generation was a revelation.

"We went from constructing the cell equivalent of a 10-story building to a 15- and a 20-story building and demonstrated the coordinated action of cytochromes and pili in the bottom floors and the need to discharge electrons via the wires in the upper floors to grid," Reguera said. "We know that we can build 200-story buildings, which really opens up opportunities for which these biofilms can be used."

In their natural state, microbes have a taste for waste, she added. Reguera's bioelectrodes also have a big appetite for waste and are ready to be scaled up and used to cleanup industrial sites while producing electricity as a byproduct. The next phase of this research will explore potential spinoff company options to bring the bioelectrodes to market.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Michigan State University
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Novel 'repair system' discovered in algae may yield new tools for biotechnology
Ithaca NY (SPX) Aug 3, 2016
A new way of fixing inactive proteins has been discovered in an algae, which uses chloroplast extracts and light to release an interrupting sequence from a protein. Research specialist Stephen Campbell and Professor David Stern at the Boyce Thompson Institute report the discovery in the July 29 issue of the Journal of Biological Chemistry. This repair system may have applications in agricu ... read more


BIO FUEL
Breakthrough solar cell captures CO2 and sunlight, produces burnable fuel

Tesla reaches $2.6 bn deal to buy SolarCity

Russia's First Solar-Powered Satellite Completes Test Flight

Low-carbon movement expected in North America

BIO FUEL
Patented bioelectrodes have electrifying taste for waste

Bioenergy decisions involve wildlife habitat and land use trade-offs

Novel 'repair system' discovered in algae may yield new tools for biotechnology

Biological wizardry ferments carbon monoxide into biofuel

BIO FUEL
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

BIO FUEL
Chemists create vitamin-driven battery

More power to you

New catalyst for hydrogen production

Researchers printed energy-producing photographs

BIO FUEL
ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

New MIT system can identify how much power is being used by each device in a household

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

Sweden's 100 percent carbon-free emissions challenge

BIO FUEL
Tesla loss widens as company works to speed production

German state Bavaria to sue VW over pollution scandal

Ride-share battle ends with Didi buying Uber China operations

VW gets preliminary approval for US emissions settlement

BIO FUEL
Rice crops that can save farmers money and cut pollution

Brazilian restaurants turn waste back into food

Ancient rice DNA data provides new view of domestication history

Mulching plus remediation corrects contaminated lawns

BIO FUEL
Lattice structure absorbs vibrations

Study looks at future of 2D materials

Self-organizing smart materials that mimic swarm behavior

Flexible building blocks of the future









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.