Energy News  
BIO FUEL
Removing the brakes on plant oil production
by Staff Writers
Upton NY (SPX) Apr 10, 2018

Using biochemical genetic techniques in plant cell cultures, this Brookhaven Lab team evaluates the effects of releasing the biochemical 'brakes' on plant oil production. Pictured are: Group leader and Biology Department Chair John Shanklin (standing), Jan Keereetaweep (front right), Hui Liu (front left), and Zhiyang Zhai.

Scientists studying plant biochemistry at the U.S. Department of Energy's Brookhaven National Laboratory have discovered new details about biomolecules that put the brakes on oil production. The findings suggest that disabling these biomolecular brakes could push oil production into high gear - a possible pathway toward generating abundant biofuels and plant-derived bioproducts. The study appears in in the journal Plant Physiology.

"It's normal for plant cells to down-regulate oil production when we feed them excess fatty acids, and this study confirms our hypothesis about how they do that. But we also discovered that the brakes on oil production are partially on even under normal conditions, which was a big surprise," said Brookhaven Lab biochemist John Shanklin, who led the research.

"It would be like driving a car for several years and finding out one day that a parking brake you didn't know about had been on all along. When you remove that brake, the car has much more power; that's what we've just discovered for plant oil production," he said.

A delicate balance
The biomolecule central to this study is the enzyme that determines the rate of oil production. That enzyme, known as ACCase, is a protein made of four subunits, all of which are necessary for the enzyme to function. With all four subunits in place, the enzyme drives the first step in the synthesis of fatty acids, key components of oils.

Earlier work by Shanklin's group in 2012 revealed that when plant cells were fed a short-term excess of fatty acids (lasting less than two days), a feedback loop inhibited this enzyme, so oil production would slow down . As long as fatty acid concentrations dropped within two days, the enzyme and oil production would turn back on. But a longer-term excess of fatty acids would permanently disable the enzyme. At the time, scientists knew of several ways that the enzyme could be inhibited, but none of those ways could explain the irreversible inhibition they were observing.

When colleagues at the University of Missouri discovered an inactive version of one of the four enzyme subunits in 2016, Shanklin suspected that this inactive subunit might be the cause of the permanent shutdown - by taking the place of one of the active subunits in the enzyme. He designed this new study to test that hypothesis.

Team member Hui Liu obtained plants in which the genes that code for the inactive subunits were individually disabled. She used those variants to breed plants that had combinations of disabled subunits. If Shanklin's idea was correct, cells with disabled inactive subunits would have a lower capacity to turn the enzyme off.

"We suspected that disabling the genes would turn off the off-switch for oil production, allowing the plant cells to make more oil," Shanklin explained.

When team member Jan Keereetaweep tested this idea by feeding the plant cells excess fatty acids, that's exactly what happened: Cells with combinations of the disabled genes didn't turn off oil production the way cells with the normal genes did.

"There was 50 percent less inhibition of oil production in the cells with disabled genes compared to the wild-type plant cells," Shanklin said. That result confirmed that the inactive subunit coded for by the normal genes in the wild-type plants was indeed what triggered permanent shutdown of the enzyme.

But the big surprise came when Keereetaweep measured fatty acid synthesis in the plant cells with disabled inactive subunits without artificially feeding them excess fatty acids and compared the results with those for wild-type plant cells under the same conditions. Under those normal conditions, where you wouldn't expect to see oil production inhibited, the enzyme driving oil production was significantly more active in plant cells with the disabled genes than in normal plant cells.

"That means that, even under normal conditions, inactive subunits are putting the brakes on ACCase, reducing its activity and limiting oil production," Shanklin said. "Disabling the genes for those inactive subunits is like taking the brakes off the car, revealing the motor's true potential."

"This project was an excellent collaboration among Keereetaweep, Liu, and Zhiyang Zhai to answer some basic scientific questions about plant metabolism," Shanklin noted. "Now, the knowledge they generated can potentially underpin strategies to increase oil accumulation in plant species grown for applications such as biofuels or bioproducts."

Research Report: "Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase"


Related Links
Brookhaven National Laboratory
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
NUS engineers pioneer greener and cheaper technique for biofuel production
Singapore (SPX) Apr 09, 2018
A team of engineers from the National University of Singapore (NUS) recently discovered that a naturally occurring bacterium, Thermoanaerobacterium thermosaccharolyticum TG57, isolated from waste generated after harvesting mushrooms, is capable of directly converting cellulose, a plant-based material, to biobutanol. A research team led by Associate Professor He Jianzhong from the Department of Civil and Environmental Engineering at NUS Faculty of Engineering first discovered the novel TG57 strain ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Photosynthetic protein structure that harvests and traps infrared light

Freedom Solar project at Northtown Plaza will save owners more than $1.25 million

Kesterite solar cells: Germanium promises better opto-electronic properties than tin

What else can molecular perovskite do?

BIO FUEL
Riyadh: No major damage to oil tanker after Yemeni attack

Kinder Morgan stops work on controversial Canada pipeline

Iranian oil projects have good break-evens, analysts say

Norway clears way for drilling in the Barents Sea

BIO FUEL
Some US states press ahead on climate change goals, despite Trump

Two degrees no longer seen as global warming guardrail

US on track to meet climate targets despite Trump: UN chief

New interactive map shows climate change everywhere in world

BIO FUEL
Knitting electronics with yarn batteries

Engineers turn plastic insulator into heat conductor

A new way to find better battery materials

Researchers charge ahead to develop better batteries

BIO FUEL
Notre Dame researchers developing renewable energy approach for producing ammonia

NUS engineers pioneer greener and cheaper technique for biofuel production

New insights into how cellulose is built could indicate how to break it

Sewage sludge leads to biofuels breakthrough

BIO FUEL
US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

Research hints at double the driving range for electric vehicles

Waymo and Jaguar team up on self-driving luxury ride

BIO FUEL
UN food agency urges 'agroecology' to fight famine

Satellites, supercomputers, and machine learning provide real-time crop type data

Animals rights groups scent blood as fashion labels go fur-free

Silk Road nomads were the original foodies

BIO FUEL
Researchers develop nanoparticle films for high-density data storage

Berkeley Lab scientists print all-liquid 3-D structures

JFSCC tracks Tiangong-1's reentry over the Pacific Ocean

Laser beam traps long-lived sound waves in crystalline solids









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.