Researchers advance biomass transformation process by Staff Writers Beijing, China (SPX) Dec 06, 2018
Biomass can serve as a renewable source for both energy and carbon. ABE (acetone, n-butanol, and ethanol) fermentation broth as a biomass-derived source of fuels and chemicals has received a lot of attention for several decades. However, the crude fermentation broth contains low concentrations of oxygenates, limiting its practical applications. Thus, it is pivotal to develop a highly efficient water-resistant catalyst to directly and selectively convert crude aqueous oxygenate mixtures to value-added chemicals; water-immiscible ones (easy separation after reaction) are especially of great importance. However, the efficiency and selectivity of the transformation process for biomass-derived intermediates remains a major techno-economic challenge. Prof. WANG Feng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and his colleagues from Peking University recently reported an efficient and novel catalytic method for the conversion of aqueous biomass fermentation broth to a water-immiscible product. Their finding was published in Nature Communications. They developed a strategy capable of transforming ~70% of carbon in an aqueous ABE fermentation mixture to 4-heptanone (4-HPO), catalyzed by tin-doped ceria (Sn-ceria) with a selectivity as high as 86%. While Sn-ceria is a versatile catalyst for dehydrogenation, the Guerbet alcohol reaction, condensation, and esterification reactions, all these reactions, involving acid-base catalysis and redox ones, relay and generate 4-HPO with high selectivity (Fig. (A)). 4-HPO is a value-added intermediate and can be used to produce jet fuel and fine chemicals (Fig. (B)). Furthermore, water, which is detrimental to the reported catalysts for ABE conversion, was beneficial for producing 4-HPO. The excellent catalytic performance of tin-doped ceria is due to the highly dispersed tin species and oxygen vacancies of ceria. "This strategy offers a route for highly efficient organic carbon utilization," said WANG. "It can potentially integrate biological and chemical catalysis platforms for the robust and highly selective production of value-added chemicals."
Scientists uncovered the mechanism of fungal luminescence and created luminescent yeasts Moscow, Russia (SPX) Nov 27, 2018 Russian scientists together with colleagues from UK, Spain, Brazil, Japan and Austria have fully described the mechanism of fungal luminescence. They found that fungi utilize only four key enzymes to produce light and that transfer of these enzymes into other organisms makes them bioluminescent. Some living organisms can glow due to special chemical reactions taking place in their bodies. Such organisms are called bioluminescent; they include fireflies, jellyfish and worms, among others. They use ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |