|
. | . |
|
by Staff Writers Quebec City, Canada (SPX) Jun 24, 2013
Universite Laval researchers have developed a highly effective method for converting CO2 into methanol, which can be used as a low-emissions fuel for vehicles. The team led by Professor Frederic-Georges Fontaine presents the details of this discovery in the latest issue of the Journal of the American Chemical Society. Researchers have been looking for a way to convert carbon dioxide into methanol in a single step using energy-efficient processes for years. "In the presence of oxygen, methanol combustion produces CO2 and water," explained Professor Fontaine. "Chemists are looking for catalysts that would yield the opposite reaction. That would allow us to slash greenhouse gas emissions by synthesizing a fuel that would reduce our dependence on fossil fuels." The catalyst developed by Frederic-Georges Fontaine and his team is made of two chemical groups. The first is borane, a compound of boron, carbon, and hydrogen. The second, phosphine, is made up of phosphorus, carbon, and hydrogen. "Unlike most catalysts developed thus far to convert CO2 into methanol, ours contains no metal, which reduces both the costs and toxic hazard of the catalyst," added the chemistry professor at the Faculty of Science and Engineering. CO2 to methanol catalysis requires a source of hydrogen and chemical energy. The researchers had the idea of using a compound called hydroborane (BH3), and the results have been spectacular. The reaction achieved is two times more effective than the best catalyst known-and it produces little waste. What makes the discovery even more compelling is the fact that the chemical reaction does not damage the catalyst, which can be reactivated by adding new substrate. The only downside of the operation is the price tag. "Our approach to creating methanol is highly effective from a chemistry standpoint, but for now the process is expensive," explained Professor Fontaine. "It takes a lot of energy to synthesize hydroborane, which makes it more expensive than methanol. We are working on ways to make the process more profitable by optimizing the reaction and exploring other hydrogen sources." In addition to Frederic-Georges Fontaine, the study's coauthors are: Marc-Andre Courtemanche and Marc-Andre Legare (Universite Laval); Laurent Maron (Universite de Toulouse).
Related Links Universite Laval Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |