Researchers identify cheaper, greener biofuels processing catalyst by Staff Writers Champaign IL (SPX) Aug 28, 2017
Fuels that are produced from nonpetroleum-based biological sources may become greener and more affordable, thanks to research performed at the University of Illinois' Prairie Research Institute that examines the use of a processing catalyst made from palladium metal and bacteria. Biofuels are made from renewable materials such as plants or algae, and offer an alternative to petroleum-based sources. However, many biofuels are costly to produce because the precursor product, bio-oil, must be processed before it is sent to the refinery to be turned into liquid fuel. Illinois Sustainability Technology Center researcher B.K. Sharma and his co-authors have identified and tested a new processing method. "Bio-oil forms from the same chemical reaction that forms petroleum," Sharma said. "But what takes millions of years naturally in the ground takes only minutes in the lab using a process that is very similar to pressure cooking." Published in the journal Fuel, their findings point to a cheaper, more environmentally friendly and renewable catalyst for processing that uses common bacteria and the metal palladium, which can be recovered from waste sources such as discarded electronics, catalytic converters, street sweeper dust and processed sewage. The bio-oil produced in the lab from algae contains impurities like nitrogen and oxygen, but treating it with palladium as a catalyst during processing helps remove those impurities to meet clean-air requirements, Sharma said. For the palladium to do its job, the bio-oil needs to flow past it during processing. Previous studies have shown that allowing the oil flow through porous carbon particles infused with palladium is an effective method, but those carbon particles are not cheap, Sharma said. "Instead of using commercially produced carbon particles, we can use bacteria cell masses as a sort of biologic scaffolding for the palladium to hold on to," Sharma said. "The oil can flow through the palladium-decorated bacteria masses as it does through the carbon particles." To test the effectiveness of the new method, Sharma and his co-authors performed a variety of chemical and physical analyses to determine if their new processing treatment produced a liquid fuel that is comparable in quality to one made using the commercially produced catalyst. "We found our product to be as good or even slightly better," Sharma said. "We were able to remove the oxygen and nitrogen impurities at a comparable rate, and yielded the same volume of product using our cheaper, greener catalyst as is observed using the more expensive commercial catalyst." The more costly commercial catalyst has the added benefit that it can be used over and over without extensive processing, whereas the Sharma group's palladium-on-bacteria catalyst will need to undergo processing to be reused. "It is a minor caveat," Sharma said. "The fact that we have shown the potential of making refinery-ready crude oil from algae bio-oil using a catalyst that can be prepared from low-grade recycled metals and green and economical bacterial biomass proves that this is a very promising advancement. In addition, this bio-catalyst would work equally well in petrochemical processing."
Research Report: "Nanoparticles of Pd supported on bacterial biomass for hydroprocessing crude bio-oil"
Zurich, Switzerland (SPX) Aug 23, 2017 Many chemists are currently researching how small carbon molecules, such as methane and methanol, can be used to generate larger molecules. The earth is naturally rich in methane, and artificial processes like the fermentation of biomass in biogas plants also produce it in abundance. Methanol can be generated from methane. Both are simple molecules containing only a single carbon atom. How ... read more Related Links University of Illinois at Urbana-Champaign Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |