Researchers use AI to plot green route to nylon by Staff Writers New York NY (SPX) Aug 27, 2019
The chemical and allied industries face such challenges as ready access to reliable energy supplies, waste reduction, water conservation, and energy efficiency. Organic electrosynthesis - an electricity-driven, energy-efficient process that can easily integrate with renewable energy sources - could help solve them. A team at the NYU Tandon School of Engineering reported that in its search to develop an innovative, environmentally friendly process to make adiponitrile (ADN) - the main precursor to nylon 6, 6 - it found a way to greatly improve the efficiency of organic electrosynthesis. The researchers credited their success in part to what they believe is the first use of artificial intelligence to optimize an electrochemical process. Miguel Modestino, a professor of chemical and biomolecular engineering, and doctoral student Daniela Blanco tweaked how electrical current is delivered to catalytic electrodes and then applied artificial intelligence (AI) to further optimize the reaction. By doing so they achieved a 30% improvement in ADN production The findings, detailed in the Proceedings of the National Academy of Sciences (PNAS), could have major implications since the team targets one of the largest organic electrosynthesis processes in the chemical industry: the electrohydrodimerization of acrylonitrile (AN) to ADN. Demand for ADN is high and growing: The market for nylon is expected to increase 4% annually through 2023. Only one company currently uses a Monsanto-invented electrochemical process to make ADN; the lion's share of the nylon precursor is made via a toxic, energy intensive thermal hydrocyanation of butadiene. By contrast, electrosynthesis of ADN is a green, efficient, chemical process that uses water-based electrolytes and can be directly coupled with renewable electricity sources such as wind or sunlight. The standard electrosynthetic process for ADN employs an "always on" direct electrical current delivered to the electrocatalytic site. But the NYU Tandon researchers found that a direct current did not maximize output of ADN and generated a great deal of the unwanted byproduct propionitrile (PN). They decided to engineer a system that delivers an intermittent current to constantly replenish reagent concentration at the electrocatalytic site (a phenomenon called mass transport) and improve ADN output. The pair supplied an artificial neural network with data from 16 different experimental cases of pulse times. "By analyzing electrochemical pulse techniques with AI, we were able to visualize ADN conversion efficiency across a range of pulse times without having to do more than a few physical experiments," said Modestino. "This innovative, integrated approach led to an unprecedented 30% improvement in ADN production and a 325% increase in the ratio of ADN to PN, mostly due a large decrease in production of the latter." Blanco explained that this technique could advance industry adoption of more sustainable processes. That is exactly what she and a former student in Modestino's laboratory envisioned when they founded a green-chemistry startup company, Sunthetics, to commercialize a sustainable nylon production process based on their research. "We wanted to show with this new research that we can make the ADN electrochemical process more competitive," she said. "Currently only 30% of global ADN output employs electrosynthesis; the rest of production involves processing over an energy- and oil-intensive catalytic reactor," she said. The next step for the team will be to use this AI approach to accelerate their research endeavors. "Instead of using a classical research model involving lengthy experimental campaigns, AI tools can help us predict experimental outcomes. To the best of our knowledge, this is the first time AI has been used to optimize an electrochemical process," Modestino said.
Research Report: "Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence,"
Protein factors increasing yield of a biofuel precursor in microscopic algae Tokyo, Japan (SPX) Aug 09, 2019 As an alternative to traditional fossil fuels, biofuels represent a more environmentally friendly and sustainable fuel source. Plant or animal fats can be converted to biofuels through a process called transesterification. In particular, the storage molecule triacylglycerol (TAG), found in microscopic algae, is one of the most promising sources of fat for biofuel production, as microalgae are small, easy to grow, and reproduce quickly. Therefore, increasing the yield of TAG from microalgae c ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |