Energy News  
BIO FUEL
Same fungus just different strains

File image: Aspergillus niger.
by Staff Writers
Seattle WA (SPX) May 19, 2011
Fungi play key roles in nature and are valued for their great importance in industry. Consider citric acid, a key additive in several foods and pharmaceuticals produced on a large-scale basis for decades with the help of the filamentous fungus Aspergillus niger.

While A. niger is an integral player in the carbon cycle, it possesses an arsenal of enzymes that can be deployed in breaking down plant cell walls to free up sugars that can then be fermented and distilled into biofuel, a process being optimized by U.S. Department of Energy researchers.

Published online ahead of print in Genome Research, a team led by Scott Baker of the Pacific Northwest National Laboratory compared the genome sequences of two Aspergillus niger strains to, among other things, better harness its industrial potential in biofuels applications.

As more than a million tons of citric acid are produced annually, the production process involving A. niger is a well understood fungal fermentation process that could inform the development of a biorefinery where organic compounds replace the chemical building blocks normally derived from petroleum.

Learning more about the genetic bases of the behaviors and abilities of these two industrially relevant fungal strains, wrote senior author Baker and his colleagues in the paper, will allow researchers to exploit their genomes towards the more efficient production of organic acids and other compounds, including biofuels.

"Aspergillus niger is an industrial workhouse for enzymes and small molecules such as organic acids," said Baker of the fungus selected for sequencing by the DOE JGI in 2005.

"Most of the world's citric acid comes from A. niger. "We know that this single organism is used for production of organic acids and for enzymes, and it can degrade plant cell wall matter for sugar production," said Baker.

"For biofuels it's a highly relevant organism since it's already been scaled up, shown to be safe, and used for enzyme production. That's why it was such an important organism to further characterize through DNA sequencing."

The DOE Joint Genome Institute (JGI) generated the 35-million base genome of A. niger ATCC 1015, the wild type strain that was used in research that led to the first patented citric acid process.

The other A. niger strain used in the study was sequenced by a company in the Netherlands in 2007 and has undergone mutagenesis and selection for enzyme production.

By analyzing the genomes on several levels-DNA, chromosome, gene and protein-Baker and his colleagues found several hundred unique genes in each strain that are key to their predominant characteristics.

For example, A. niger ATCC 1015 had a higher expression of traits involved in high citric acid yields. On the other hand, the induced mutant strain had more elements related to efficient enzyme production.

The team also noted that the genes involved in boosting enzyme production in the induced mutant strain of A. niger may have come from another Aspergillus strain via horizontal gene transfer, which allows one organism to acquire and use genes from other organisms.

Of the 47 authors on this paper, 30 are from Europe. "This is an excellent example of international collaboration combining genome sequencing with functional genomics, transcriptomics and metabolomics, which led to a system level study and comparative analysis of two A. niger strains," said study co-author Igor Grigoriev, head of the DOE JGI Fungal Genomics Program.

"Nearly a dozen additional Aspergillus strains that are used in industry are either being sequenced or in the queue to be at the DOE JGI. A better understanding of genomic content and organization and how rearrangements and mutations lead to desired traits should facilitate further optimization of these strains for different bio-products."

As of 2007, the global market for citric acid was estimated to be approximately $1.2 billion with more than 500,000 tons produced annually by fermentation.

"Having the genetic blueprint for a citric acid-producing fungus will increase our understanding of the organism's metabolic pathways that can be fine-tuned to enhance productivity or alter its metabolism to generate other green chemicals and fuels from renewable and sustainable plant-derived sugars," said Randy Berka, Director, Novozymes, Inc., and one of the publication's authors.

"It was thought that if we understood what makes the citric acid process so productive, then we could start to understand how to make other organic acids that could be commodity chemicals," said Baker. "We now have the tools and the foundation of knowledge to be able to ask some additional important questions that we weren't equipped with the genomic resources to answer before."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
DOE/Joint Genome Institute
Bio Fuel Technology and Application News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


BIO FUEL
Turning plants into power houses
St. Louis MO (SPX) May 16, 2011
"I have a slide that has a photo of a cornfield and a big photovoltaic array," says Robert Blankenship, a scientist who studies photosynthesis at Washington University in St. Louis. "When I give talks I often ask the audience which one is more efficient. Invariably the audience votes overwhelmingly in favor of photosynthesis." They are wrong. This question and its surprising answer (below) ... read more







BIO FUEL
Energy Focus and Entech Solar Announce Commercial Skylighting Marketing and Distribution Agreement

California Green Designs completes largest commercial solar installation in LA

Power-One Introduces New Three-Phase String Inverters for Commercial Solar Market

Emerson To Provide Power Technology For One Of The Largest Solar Energy Projects In US

BIO FUEL
BIO FUEL
Evolutionary lessons for wind farm efficiency

Global warming won't harm wind energy production, climate models predict

Study: Warming won't lessen wind energy

Mortenson Construction to Build its 100th Wind Project

BIO FUEL
Oil prices slide as IEA issues gloomy demand warning

Newly Installed Alaska North Slope Well Will Test Hydrate Production Tech

Energy harvesters transform waste into electricity

Outside View: Home sales and gas prices

BIO FUEL
US presses green growth in Asia

Britain pledges to halve CO2 output

Power plants vulnerable to hackers: security firm

Pakistan PM asks for China energy investment

BIO FUEL
Japan carmakers to work over weekend: industry body

Japanese electric car 'goes 300km' on single charge

Perfect welds for car bodies

Saab, Spyker announce auto deal in China

BIO FUEL
Exploding melons sow new China food fears

Livestock genes could protect against one of Africa's oldest animal plagues

Drought tolerance in crops: Shutting down the plant's growth inhibition under mild stress

India's top court imposes ban on 'toxic' pesticide

BIO FUEL
Amazon selling more Kindle books than print books

China slaps export quota on rare earth alloys

Physicist accelerates simulations of thin film growth

Research questions reality of supersolid in Helium-4


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement