Subscribe free to our newsletters via your
. Bio Fuel News .




BIO FUEL
Scientists identify mechanism for regulating plant oil production
by Staff Writers
Upton NY (SPX) Jun 05, 2012


File image.

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have identified key elements in the biochemical mechanism plants use to limit the production of fatty acids. The results suggest ways scientists might target those biochemical pathways to increase the production of plant oils as a renewable resource for biofuels and industrial processes.

"Now that we understand how this system operates - how plants 'know' when they've made enough oil and how they slow down production - we can look for ways to break the feedback loop so they keep making more oil," said Brookhaven biochemist John Shanklin, leader of the group publishing the work in the Proceedings of the National Academy of Sciences.

Similar biochemical feedback loops regulate a wide range of metabolic processes in living things. They work similar to the way a thermostat maintains a relatively constant temperature in your home: When it gets too warm, the heating system turns off until the temperature falls to the set point, at which time it turns on again.

"There were hints that such a feedback system might exist for plant oil production," said Shanklin, who credits Carl Andre - a former postdoctoral research fellow now working at BASF Plant Science in North Carolina - with designing and carrying out the intricate biochemical detective work that uncovered the details.

"It's very difficult to work on developing oil seeds because they are very tiny," Shanklin explained. So the scientists performed their biochemical tests using a plant embryo cell culture to simulate what goes on in the seeds.

With assistance from the Radiotracer Chemistry and Biological Imaging group at Brookhaven (http://www.bnl.gov/medical/RCIBI/), Andre synthesized "labeled" forms of the fatty acids that occur as intermediates along the metabolic pathway that leads to oil production. He fed these, one at a time, to the plant cell cultures, measuring the labeled metabolites with the help of analytic chemist Richard Haslam of Rothamsted Research in the UK. They also looked to see which added intermediates would inhibit oil production.

Andre's work pointed to a fatty acid that occurs fairly late in the production process, coupled to a carrier protein (essential to making the oily substance soluble in water), as the key intermediate that puts the brakes on oil production. It's the first "desaturated" fatty acid - the first one with a double bond between two of the carbon atoms, formed after all 18 carbon atoms are added to the chain.

Then, knowing that this intermediate somehow sent the "slow-down" signal, the team sought to determine its "target" - how it actually inhibits oil synthesis. They knew from other biochemical feedback loops that the likely target would be an enzyme early in the synthesis pathway. But they wanted to figure out exactly which one.

To do this, they monitored the production process by labeling the intermediates one at a time with a radioactive form of carbon while also feeding the cells an excess of the "slow-down" signaling fatty acid. If the label from the intermediate ended up in the oil product, the "slow-down" signal had to have its effect prior to that step.

The first two experiments gave them the answer: When they labeled the first compound in the synthesis pathway, which is acetate, very little labeled carbon ended up in the oil and oil production was strongly reduced. But if they fed the second compound, labeled malonate, the labeled carbon quickly entered the oil.

"From these findings we concluded that the accumulation of the first desaturated fatty acid in the synthesis process inhibits the enzyme that operates at the first step, which converts acetate to malonate," Shanklin said. "That enzyme is Acetyl-CoA carboxylase, or ACCase."

The next step was to make extracts of the tissue culture and directly measure ACCase activity in the test tube. Addition of the suspected slow-down signal provided independent proof that both the signal and target of the signal were correctly identified.

To establish that this feedback mechanism operates in seeds and is not just a weird quirk of the cell-culture setup, the scientists isolated developing canola embryos to test the process. "It worked precisely the same way," Shanklin said.

With the details of the oil production feedback mechanism in hand, Shanklin's team is now exploring how they might interfere with the process, including biochemical schemes to keep the "slow-down" signaling metabolite from accumulating, ways to block its effects on ACCase, and more.

"If we can interrupt this process, we hope to fool the cells so they won't be able to gauge how much oil they have made and will make more," Shanklin said.

.


Related Links
DOE/Brookhaven National Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Energy-dense biofuel from cellulose close to being economical
West Lafayette IN (SPX) Jun 05, 2012
A new Purdue University-developed process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting. A Purdue economic analysis shows that the cost of the thermo-chemical H2Bioil method is competitive when crude oil is about $100 per barrel when using certain energy methods to create hydrogen needed for the proc ... read more


BIO FUEL
AREVA Solar's Kimberlina Power Plant awarded POWER Magazine's 'Top Plant'

Q.CELLS Finalizes Construction of 69MW Project in North America

Eco Environments delivers biggest solar PV project in the North of England

Trina Solar brings clean solar energy to Lotus F1 Team headquarters

BIO FUEL
Scientists identify mechanism for regulating plant oil production

UGA scientists map and sequence genome of switchgrass relative foxtail millet

Energy-dense biofuel from cellulose close to being economical

Nuisance seaweed found to produce compounds with biomedical potential

BIO FUEL
Wind Powering An Island Economy

China Leads Growth in Global Wind Power Capacity

US slaps duties on Chinese wind towers

Obama pushes for wind power tax credit

BIO FUEL
IEA sees natural gas consumption climbing

Greenpeace maps way to saving Arctic from oil drilling

Philippines says tensions ease in China sea row

Green groups block websites to protest Canada oil

BIO FUEL
Energy efficiency for California buildings

German electric grid need pegged at $25B

Indonesia to tap its geothermal supply

Greener, More Efficient Lighting

BIO FUEL
Volkswagen targets China in group shakeup

Japan's vehicle output soars 174% in April

Japan's April auto output soars in year after quake

Ferrari recalls 56 cars in China: state media

BIO FUEL
EU farming reform caught in budget stalemate

France to ban Swiss pesticide as bee threat

Brazil farmers in legal feud with Monsanto over GM soy

Livestock industry beefs up Illinois economy

BIO FUEL
Artemis keeps talking the talk

Nintendo touts games for Wii U GamePad console

Microsoft links Xbox with smartphones, tablets

E3 to showcase big videogame titles, hot trends




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement