Energy News  
BIO FUEL
Scientists unlock 'green' energy from garden grass
by Staff Writers
Cardiff, UK (SPX) Jul 26, 2016


illustration only

Garden grass could become a source of cheap and clean renewable energy, scientists have claimed. A team of UK researchers, including experts from Cardiff University's Cardiff Catalysis Institute, have shown that significant amounts of hydrogen can be unlocked from fescue grass with the help of sunlight and a cheap catalyst.

It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen, which has enormous potential in the renewable energy industry due to its high energy content and the fact that it does not release toxic or greenhouse gases when it is burnt.

Co-author of the study Professor Michael Bowker, from the Cardiff Catalysis Institute, said: "This really is a green source of energy.

"Hydrogen is seen as an important future energy carrier as the world moves from fossil fuels to renewable feedstocks, and our research has shown that even garden grass could be a good way of getting hold of it."

The team, which also includes researchers from Queen's University Belfast, have published their findings in the Royal Society journal Proceedings A.

Hydrogen is contained in enormous quantities all over in the world in water, hydrocarbons and other organic matter.

Up until now, the challenge for researchers has been devising ways of unlocking hydrogen from these sources in a cheap, efficient and sustainable way.

A promising source of hydrogen is the organic compound cellulose, which is a key component of plants and the most abundant biopolymer on Earth.

In their study, the team investigated the possibility of converting cellulose into hydrogen using sunlight and a simple catalyst - a substance which speeds up a chemical reaction without getting used up.

This process is called photoreforming or photocatalysis and involves the sunlight activating the catalyst which then gets to work on converting cellulose and water into hydrogen. The researchers studied the effectiveness of three metal-based catalysts - Palladium, Gold and Nickel.

Nickel was of particular interest to the researchers, from a practical point of view, as it is a much more earth-abundant metal than the precious metals, and is more economical.

In the first round of experiments, the researchers combined the three catalysts with cellulose in a round bottom flask and subjected the mixture to light from a desk lamp. At 30 minutes intervals the researchers collected gas samples from the mixture and analysed it to see how much hydrogen was being produced.

To test the practical applications of this reaction, the researchers repeated the experiment with fescue grass, which was obtained from a domestic garden.

Professor Michael Bowker continued: "Up until recently, the production of hydrogen from cellulose by means of photocatalysis has not been extensively studied.

"Our results show that significant amounts of hydrogen can be produced using this method with the help of a bit of sunlight and a cheap catalyst.

"Furthermore, we've demonstrated the effectiveness of the process using real grass taken from a garden. To the best of our knowledge, this is the first time that this kind of raw biomass has been used to produce hydrogen in this way. This is significant as it avoids the need to separate and purify cellulose from a sample, which can be both arduous and costly."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cardiff University
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Olive oil waste yields molecules useful in chemical and food industries
Granada, Spain (UPI) Jul 15, 2016
Scientists have found a way to turn waste byproducts from the olive oil production process into biosurfactants and monoglycerides, molecules immensely useful to the chemical and food industries. Biosurfactants and monoglycerides are surface active agents, or surficants - part oil-soluble component, part water-soluble component. Surficants are used to lower surface and interfacial tensi ... read more


BIO FUEL
Solar plane nears end of historic round-the-world trip

New discoveries about photosynthesis may lead to solar cells of the future

World touring solar plane's final leg to UAE delayed

The future of perovskite solar cells has just got brighter - come rain or shine

BIO FUEL
Olive oil waste yields molecules useful in chemical and food industries

One reaction, two results, zero waste

Neural networks to obtain synthetic petroleum

From climate killer to fuels and polymers

BIO FUEL
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

BIO FUEL
WSU researchers determine key improvement for fuel cells

Organic molecules could store energy in flow batteries

Electricity generated with water, salt and an ultra thin membrane

Atomic bits despite zero-point energy

BIO FUEL
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

BIO FUEL
S.Korea's Samsung invests $450 mn in China carmaker

Volvo Cars confident of setting sales record

Volkswagen execs named in new emissions lawsuits

Tesla plans new truck, bus and car-sharing system

BIO FUEL
How plants can grow on salt-affected soils

Scientists sequence genome of 6,000-year-old barley

Researchers build trenches to curb nitrogen runoff, algae growth

Subtropical Cornwall climate could mean exotic new crops

BIO FUEL
Rice's 'antenna-reactor' catalysts offer best of both worlds

'Jumping film' harnesses the power of humidity

Chemists create microscopic and malleable building blocks

Computational design tool transforms flat materials into 3-D shapes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.