Energy News  
BIO FUEL
Smaller, cheaper microbial fuel cells turn urine into electricity
by Staff Writers
Amsterdam, Netherlands (SPX) Mar 23, 2016


File image.

A new kind of fuel cell that can turn urine into electricity could revolutionize the way we produce bioenergy, particularly in developing countries. The research, published in Electrochimica Acta, describes a new design of microbial fuel cell that's smaller, cheaper and more powerful than traditional ones.

The world's supply of fossil fuels is being depleted, and there is increasing pressure to develop new renewable sources of energy. Bioenergy is one such source, and microbial fuel cells can produce it.

In their study, researchers from University of Bath, Queen Mary University of London and the Bristol Robotics Laboratory describe a new design of microbial fuel cell that overcomes two limitations of standard microbial fuel cells: their cost and low power production.

"Microbial fuel cells have real potential to produce renewable bioenergy out of waste matter like urine," said Dr. Mirella Di Lorenzo, corresponding author of the study from the University of Bath.

"The world produces huge volumes of urine and if we can harness the potential power of that waste using microbial fuel cells, we could revolutionize the way we make electricity."

Microbial fuel cells are devices that use the natural processes of certain bacteria to turn organic matter into electricity. There are other ways of producing bioenergy, including anaerobic digestion, fermentation and gasification.

But microbial fuel cells have the advantage of working at room temperature and pressure. They're efficient, relatively cheap to run and produce less waste than the other methods.

There are, however, some limitations. Microbial fuel cells can be quite expensive to manufacture. The electrodes are usually made of cost-effective materials, but the cathode often contains platinum to speed up the reactions that create the electricity. Also, microbial fuel cells tend to produce less power than the other methods of bioenergy production.

The new miniature microbial fuel cell uses no expensive materials for the cathode; instead it's made of carbon cloth and titanium wire. To speed up the reaction and create more power, it uses a catalyst that's made of glucose and ovalbumin, a protein found in egg white. These are typical constituents of food waste.

"We aim to test and prove the use of carbon catalysts derived from various food wastes as a renewable and low-cost alternative to platinum at the cathode," said corresponding author Dr. Mirella Di Lorenzo from the University of Bath.

They then tweaked the design to see what would produce more power. Doubling the length of the electrodes, from 4mm to 8mm, increased the power output tenfold. By stacking up three of the miniature microbial fuel cells, the researchers were able to increase the power tenfold compared to the output of individual cells.

"Microbial fuel cells could be a great source of energy in developing countries, particularly in impoverished and rural areas," said Jon Chouler, lead author of the study from the University of Bath.

"Our new design is cheaper and more powerful than traditional models. Devices like this that can produce electricity from urine could make a real difference by producing sustainable energy from waste."

"We have shown that the cell design has an incidence on performance and we want to further investigate the relevance of electrode surface area to volume ratio on performance. Our aim is to be able to effectively miniaturize the MFC and scale-up power production by generating compact batteries of multiple miniature units," added Dr. Di Lorenzo.

"Towards effective small scale microbial fuel cells for energy generation from urine" by Jon Chouler, George A. Padgett, Petra J. Cameron, Kathrin Preuss, Maria-Magdalena Titirici, Ioannis Ieropoulos and Mirella Di Lorenzo (doi: 10.1016/j.electacta.2016.01.112). The article appears in Electrochimica Acta, Volume 192 (February 2016), published by Elsevier.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Elsevier
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Biodiesel from sugarcane more economical than soybean
Urbana IL (SPX) Mar 21, 2016
America's oil consumption far exceeds that of every other country in the world. What's more, it's unsustainable. Therefore, in 2007, Congress mandated a move away from petroleum-based oils toward more renewable sources. Soybeans, an important dietary protein and the current primary source of plant-based oils used for biodiesel production, only yield about one barrel per acre. At this rate, the s ... read more


BIO FUEL
Industry tightens screws on solar panel safety

Lockheed Martin forms energy group

Ingeteam Test Labs join Intertek's global SATELLITE program

Building better solar technologies for deep space missions

BIO FUEL
Biodiesel from sugarcane more economical than soybean

Growing Pure Algae 24 7 and Without Sunlight

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

BIO FUEL
Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

BIO FUEL
Compressing turbulence to improve internal confinement fusion experiments

Hot rocks: Kenya taps geothermal heat to boost power

Ferrite boosting photocatalytic hydrogen evolution

New fuel cell design powered by graphene-wrapped nanocrystals

BIO FUEL
Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

BIO FUEL
Industry calls for fast lane for self-driving cars

US unveils emergency braking deal with automakers

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

BIO FUEL
How more Research funding can hasten green revolution

Network of germ sleuths heads off nearly 276,000 foodborne illnesses a year

Fertilizer applied to fields today will pollute water for decades

Pesticides affect bees' ability to locate flowers, drink nectar

BIO FUEL
Cornell engineers unveil self-healing, morphing metal

New electrode for ion concentration analysis

Laser beams with a 'twist'

A foldable material that can change size, volume and shape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.