Energy News  
BIO FUEL
Solar fuels working well under pressure
by Staff Writers
Thuwal, Saudi Arabia (SPX) Aug 14, 2018

file illustration only

Highly fuel-efficient new engine designs could significantly reduce the environmental impact of vehicles, especially if the engines run on renewable nonpetroleum-based fuels. Ensuring these unconventional fuels are compatible with next-generation engines was the aim of a new computational study on fuel ignition behavior at KAUST.

The team, led by Hong Im at the KAUST Clean Combustion Center, investigated the ignition of methanol-based fuel formulations. "Methanol is considered a promising fuel from both economic and environmental standpoints," says Wonsik Song, a Ph.D. student in Im's team. Methanol can be produced renewably as a biofuel or by a solar-driven electrochemical reaction that makes methanol from carbon dioxide. However, pure methanol fuel is ill-suited to the latest engine designs.

Conventional gasoline engines use a spark to ignite the fuel. Some modern gasoline engines can switch to compression ignition mode, operating like a diesel engine under certain conditions to maximize fuel efficiency. But methanol is not reactive enough for compression ignition, says Song. "Our approach is to blend a more reactive fuel, dimethyl ether (DME), with methanol to make a fuel blend usable in compression ignition engines that provide better combustion efficiency than the spark-ignition counterpart."

The team used computational analysis to investigate methanol-DME combustion chemistry. Because combustion is too complex to efficiently simulate in full, the researchers first generated a skeletal model of the process in which peripheral reactions have been stripped away.

"Starting from the detailed model, including 253 chemical species and 1542 reactions, we generated a skeletal model comprising 43 species and 168 reactions that accurately describe the ignition and combustion characteristics of methanol and DME," explains Efstathios Tingas, a postdoctoral member of Im's team.

The researchers showed that DME dominated reaction pathways during the initial phase of ignition and was a highly effective ignition promoter. They also examined the effect of increasing the initial air temperature to simulate the hot spots that might develop inside the engine. "At high temperatures, DME actually retards ignition slightly, because DME chemistry relies on the formation of some highly oxygenated molecules, which are inherently unstable at higher temperatures," Tingas says. However, at high temperatures the methanol itself becomes highly reactive. They also studied DME's effects on ignition timing.

"This study serves as a basic guideline to study the ignition of methanol and DME blends in combustion engines with compression ignition modes," says Song. The next step will be to perform more complex simulations that incorporate the effects of turbulence on fuel ignition, he adds.

Research paper


Related Links
King Abdullah University of Science and Technology (KAUST)
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
USTC develops a family of bioinspired artificial woods by traditional resins
Beijing, China (SPX) Aug 13, 2018
Nature has provided us not only the fantastic materials, but also the inspiration for the design and fabrication of high-performance biomimetic engineering materials. Woods, which have been used for thousands of years, have received considerable attention due to the low density and high strength. The unique anisotropic cellular structure endow the woods with outstanding mechanical performances. In recent decades, various materials have been produced into monolithic materials with anisotropically c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Insight into loss processes in perovskite solar cells enables efficiency improvements

Scientists create a UV detector based on nanocrystals synthesized by using ion implantation

China cooling has mixed solar power impact

French energy company ENGIE boasts of solar success

BIO FUEL
Iraq PM cancels visit to sanctions-hit Iran

Fracking scheduled for British Columbia

Venezuela facing compounding oil woes

Caspian states look to settle maritime issues

BIO FUEL
Despair as crippling drought hammers Australian farmers

Ever-increasing CO2 levels could take us back to the tropical climate of Paleogene period

Ten ways the planet could tip into 'Hothouse Earth'

An increase in Southern Ocean upwelling may explain the Holocene CO2 rise

BIO FUEL
Expanding the limits of Li-ion batteries: Electrodes for all-solid-state batteries

Old mining techniques make a new way to recycle lithium batteries

Scientists create biodegradable, paper-based biobatteries

A breakthrough of monitoring energy storage at work using optical fibers

BIO FUEL
Industrial breakthrough in CO2 usage

Scientists discover how to protect yeast from damage in biofuel production

Taming defects in nanoporous materials to put them to a good use

USTC develops a family of bioinspired artificial woods by traditional resins

BIO FUEL
Tesla: Musk's tweet a bridge too far?

Tesla says on track for profit despite bigger 2Q loss

By turning its back on Wall Street, Tesla could avoid market pressures

EV charging in cold temperatures could pose challenges for drivers

BIO FUEL
Heat brings relief for French vineyards

Archeological plant remains point to southwest Amazonia as crop domestication center

Starbucks and Alibaba join forces as China coffee war brews

Deadly heatwaves threaten China's northern breadbasket

BIO FUEL
Rediscovering the sources of Egyptian metals

A new classification of symmetry groups in crystal space proposed by Russian scientists

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions

Better way found to determine the integrity of metals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.