|
. | . |
|
by Staff Writers New Haven CT (SPX) Jan 26, 2015
The harvesting of wood to meet the heating and cooking demands for billions of people worldwide has less of an impact on global forest loss and carbon dioxide (CO2) emissions than previously believed, according to a new Yale-led study. Writing in the journal Nature Climate Change, a team of researchers, including Prof. Robert Bailis of the Yale School of Forestry and Environmental Studies (F&ES), concludes that only about 27 to 34 percent of wood fuel harvested worldwide would be considered "unsustainable." According to the assessment, "sustainability" is based on whether or not annual harvesting exceeds incremental re-growth. The other authors are Rudi Drigo, an independent forestry specialist with international experience; and Adrian Ghilardi and Omar Masera of the National Autonomous University of Mexico. According to the authors, the findings point to the need for more nuanced, local-specific policies that address forest loss, climate change, and public health. They also suggest that existing carbon offset methodologies used to reduce carbon emissions likely overstate the CO2 emission reductions that can be achieved through the promotion of more efficient cookstove technologies. The study identifies a set of "hotspots" where the majority of wood extraction exceeds sustainable yields. These hotspot regions -- located mainly in South Asia and East Africa -- support about 275 million people who are reliant on wood fuel. However, in other regions, the authors say, much of the wood used for this traditional heating and cooking is actually the byproduct of deforestation driven by other factors, such as demand for agricultural land, which would have occurred anyway. "If forests and woodlands would have been cut down anyway, then the projects designed to reduce wood fuel demand are not actually going to reduce deforestation," said Bailis, an associate professor at F&ES and lead author of the study. "Sure, you're reducing wood use, but the underlying pressures driving deforestation are still out there." The results stand in contrast to a long-held assumption that the harvesting of wood fuels -- which accounts for more than half of the wood harvested worldwide -- is a major driver of deforestation and climate change. Using a model originally developed by Drigo and Masera, and already applied in more than 20 countries, the researchers produce a spatially explicit snapshot of wood fuel supply and demand in 90 countries across the world's tropical regions, where burning wood is a critical source of energy for cooking and heating. "One of the problems with traditional bio-energy is that the situation is very locally specific, so you can't come up with a general response for all places," said Masera. "One of the real strengths of this paper is that it demonstrates a methodology that allows you to identify priority regions for intervention" In addition to the global analysis, the researchers are using the same model to evaluate the sustainability of wood fuel resources in three case studies: Honduras, Kenya, and the Indian state of Karnataka. "Even within a given country the situation varies a great deal," said Drigo. "Some areas are over-exploited while others are under-exploited or totally untouched. A better understanding of the relationship between supply and demand requires this type of spatial approach to clarify what the impacts of different policies will be." Emissions from wood fuels account for about 1.9 to 2.3 percent of global emissions, the study says. The deployment of 100 million improved cookstoves could reduce this by 11 to 17 percent, said Bailis, who also studies the factors that influence the adoption of cleaner cookstoves in developing nations. These reductions would be worth more than $1 billion per year in avoided greenhouse gas emissions if black carbon were integrated into carbon markets, he said. "We need to be able to understand where these different components of non-renewability are coming from in order to get a better sense of the positive impacts of putting stoves into peoples' homes or promoting transitions to cooking with gas or electricity," he said.
Related Links Yale School of Forestry and Environmental Studies Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |