Energy News  
BIO FUEL
Team shatters theoretical limit on bio-hydrogen production
by Staff Writers
Lincoln NB (SPX) Jul 27, 2018

University of Nebraska-Lincoln researchers have engineered the bacterial species Thermotoga maritima to produce more hydrogen than any bacterium before it.

In 1977, researcher Rudolf Thauer proposed a theoretical ceiling on the amount of hydrogen that bacteria could produce via fermentation, the sugar-converting process also responsible for yogurt, beer and cheese.

Propelled by a genetic engineering technique that presents bacteria with a simple choice - adapt or die - research from the University of Nebraska-Lincoln just punched through that 40-year-old ceiling like Iron Man through papier-mache.

A version of the Thermotoga maritima bacterium engineered by Raghuveer Singh, Paul Blum and their colleagues produced 46 percent more hydrogen per cell than a naturally occurring form of the same species.

The team's highest reported yield - 5.7 units of hydrogen for every unit of glucose fed to the bacterium - easily surpassed the theoretical limit of 4 units.

The feat represents a breakthrough in the global effort to scale up the sustainable production of clean-burning hydrogen for vehicles and heavy industry, Singh said. Most commercial hydrogen comes from refining non-renewable fossil fuels such as natural gas, oil and coal - processes that generate sizable amounts of carbon dioxide.

"I always had been interested in microbes and their potential to make something useful," said Singh, a doctoral graduate of Nebraska who conducted the research as part of his dissertation. "The current hydrogen production technologies create a lot of environmental problems. My dream is to improve biological systems and make them more competitive with those technologies."

Slowing The Sugar Rush
The T. maritima bacterium ferments sugar into simpler carbon-based molecules that fuel two processes: growing new cells and producing so-called metabolites, one of which is hydrogen. But under normal conditions, most of that carbon gets funneled into the biological machinery that cranks out new cells, leaving little left over for hydrogen production.

"There's a strong coupling between hydrogen synthesis and the growth of new cells, and this coupling needs to be weakened in order to increase the yield of hydrogen," said Singh, now a postdoctoral researcher at the University of Florida.

So the researchers decided to temporarily inactivate a gene that has no effect on cell growth but slows hydrogen production in T. maritima. When they did, a second gene - this one involved in transporting sugar - spontaneously mutated to prevent a lethal buildup of sugar-based metabolites. That mutation also dramatically redirected the bacterium's energy expenditure from cell growth to hydrogen production, creating a new strain that the researchers named Tma 200.

After transferring the newly mutated gene into a naturally occurring version of T. maritima, the researchers found that the bacterium overproduced hydrogen just as Tma 200 did - confirming the influence of sugar uptake on hydrogen yields.

"We created the new organism using classical genetics because the necessary changes could not be predicted," said Blum, Charles Bessey Professor of Microbiology at Nebraska.

Singh, Blum and colleague Derrick White have since worked with technology-transfer office NUtech Ventures to apply for patent protection of the genetic technique, which Singh described as a "promising strategy" for increasing bacterial production of any potential metabolite.

"Hydrogen is just one of many possibilities," he said.

Research paper


Related Links
University of Nebraska-Lincoln
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Splitting water: Nanoscale imaging yields key insights
Berkeley CA (SPX) Jul 19, 2018
In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel - just as plants do - researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material's macrosc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Canadian energy company says renewables key to emissions goal

States boost renewable energy and development when utilities adopt renewable standards

Solar Industry Pros Get Quick Solar Power Readings with New Extech Pocket-Sized Meter

Materials scientists of Lomonosov MSU proposed a novel approach for obtaining films for solar cells

BIO FUEL
Surveys begin at potential Australian oil and gas giant

Oil prices caught between economic, security risks

OMV unfazed by U.S. pressure on Nord Stream pipeline

U.S. gas prices moving lower, but could still be volatile

BIO FUEL
Humans are changing global seasonal climate cycles, satellite data shows

European heatwave brings drought, wildfires

A scientist's final paper looks toward Earth's future climate

More Americans than ever say climate change is real, human-caused

BIO FUEL
Organic Mega Flow Battery transcends lifetime, voltage thresholds

New battery could store wind and solar electricity affordably and at room temperature

Gold nanoparticles to find applications in hydrogen economy

Researchers upend conventional wisdom on thermal conductivity

BIO FUEL
Feeding plants to this algae could fuel your car

Splitting water: Nanoscale imaging yields key insights

Carbon dioxide-to-methanol process improved by catalyst

Finding the right balance for catalysts in the hydrogen evolution reaction

BIO FUEL
Uber resumes testing for autonomous cars in 'manual mode'

GM launches peer-to-peer car sharing service on rental platform

EU carmakers 'inflating' emissions to skew carbon targets

EU says VW repairs most cars with cheating devices

BIO FUEL
NASA's 'Space Botanist' Gathers First Data

Dying groundskeeper links Monsanto's Roundup to cancer

Dying groundskeeper to testify in Roundup cancer trial

Japan lifts ban on Canadian wheat imports

BIO FUEL
Material formed from crab shells and trees could replace flexible plastic packaging

Detecting damage in non-magnetic steel with the help of magnetism

SLAC's ultra-high-speed 'electron camera' catches molecules at a crossroads

Future electronic components to be printed like newspapers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.