Energy News  
BIO FUEL
Thermal switch discovered in engineered squid-based biomaterials
by Staff Writers
University Park PA (SPX) Aug 15, 2018

file image

Tuning materials for optimal optical and electrical properties is becoming commonplace. Now, researchers and manufacturers may be able to tune materials for thermal conductivity by using a squid-inspired protein made of multiple DNA repeats.

"Controlling thermal transport in modern technologies - refrigeration, data storage, electronics or textiles - is an unsolved problem," said Melik Demirel, professor of engineering science and mechanics and director, Center for Research on Advanced Fiber Technologies at Penn State. "For example, most standard plastic materials have very low thermal conductivity and they are thermal insulators. These squid-based bio-materials that we are working on have low conductivity at ambient humidity, but they can be engineered so that their thermal conductivity increases dramatically."

In this case, the increase is dependent on how many tandem repeats are in the protein, and can be 4.5 times larger than increases seen in conventional plastics. Tandem repeats are repeating strings of DNA that are found in nature, in this case, in squid ring teeth.

One potential use of this bioprotein film might be as a fabric coating, especially for athletic wear, said the researchers. The material could be perfectly comfortable and cozy in everyday use, but when actually used for heavy activity, the sweat produced by the wearer could "flip" the thermal switch and allow the fabric to remove heat from the wearer's body.

Demirel and his team have designed synthetic proteins that are patterned on tandem repeating sequences. They are able to choose the number of repeats they want and investigate how the various proteins react, in this case, to moisture.

"Under ambient conditions - less than 35 percent humidity - the thermal conductivity of these proteinaceous films do not depend on repeat units or molecular weight, and demonstrate similar thermal conductivities to disordered polymers and water-insoluble proteins," the researchers report today (Aug. 13) in Nature Nanotechnology.

However, when the films are engineered to have higher molecular topology, the thermal conductivity jumps when they become wetter, through high humidity, water or sweat. In collaboration with the University of Virginia team and NIST, the researchers found that as the number of tandem repeats increased, the thermal conductivity did as well.

"Because the thermal conductivity when wet is linearly related to the number of repeats, we can program the amount of thermal conductivity into the material," said Demirel. "So, we could make better thermal switches, regulators and diodes similar to high-performance devices to solve the problems in modern technologies such as refrigeration, data storage, electronics or textiles."

When the material returns to normal ambient humidity or lower, the switch turns off, and the protein no longer conducts heat as efficiently.


Related Links
Penn State
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
USTC develops a family of bioinspired artificial woods by traditional resins
Beijing, China (SPX) Aug 13, 2018
Nature has provided us not only the fantastic materials, but also the inspiration for the design and fabrication of high-performance biomimetic engineering materials. Woods, which have been used for thousands of years, have received considerable attention due to the low density and high strength. The unique anisotropic cellular structure endow the woods with outstanding mechanical performances. In recent decades, various materials have been produced into monolithic materials with anisotropically c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Insight into loss processes in perovskite solar cells enables efficiency improvements

Scientists create a UV detector based on nanocrystals synthesized by using ion implantation

China cooling has mixed solar power impact

French energy company ENGIE boasts of solar success

BIO FUEL
Iraq PM cancels visit to sanctions-hit Iran

North Sea player Neptune expanding its position

China committed to Iranian oil and gas

Fracking scheduled for British Columbia

BIO FUEL
Despair as crippling drought hammers Australian farmers

Ever-increasing CO2 levels could take us back to the tropical climate of Paleogene period

Ten ways the planet could tip into 'Hothouse Earth'

An increase in Southern Ocean upwelling may explain the Holocene CO2 rise

BIO FUEL
Expanding the limits of Li-ion batteries: Electrodes for all-solid-state batteries

Old mining techniques make a new way to recycle lithium batteries

Scientists create biodegradable, paper-based biobatteries

A breakthrough of monitoring energy storage at work using optical fibers

BIO FUEL
Industrial breakthrough in CO2 usage

Scientists discover how to protect yeast from damage in biofuel production

Taming defects in nanoporous materials to put them to a good use

Renewables could drastically cut tailpipe emissions

BIO FUEL
Elon Musk says in talks with Saudis on taking Tesla private

Tesla: Musk's tweet a bridge too far?

Tesla says on track for profit despite bigger 2Q loss

By turning its back on Wall Street, Tesla could avoid market pressures

BIO FUEL
Heat brings relief for French vineyards

Archeological plant remains point to southwest Amazonia as crop domestication center

Starbucks and Alibaba join forces as China coffee war brews

Deadly heatwaves threaten China's northern breadbasket

BIO FUEL
UNH researchers find seed coats could lead to strong, tough, yet flexible materials

Rediscovering the sources of Egyptian metals

A new classification of symmetry groups in crystal space proposed by Russian scientists

France to set penalties on non-recycled plastic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.