Energy News  
BIO FUEL
Towards more efficient biofuels by making oil from algae
by Staff Writers
Kobe, Japan (SPX) Apr 20, 2017


Differences in cell contents based on presence of saltwater. Image courtesy Kobe University.

The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team. This discovery could contribute to the development of biofuels. The findings were published on April 4 in Scientific Reports.

The research was carried out by a group led by Professor HASUNUMA Tomohisa and Academic Researcher KATO Yuichi, both from the Kobe University Graduate School of Science, Technology and Innovation.

During the 20th century the petrochemical industry developed rapidly, leading to depletion of fossil resources and climate change on a global scale. In order to solve these issues and realize a sustainable and environmentally-conscious society, we must make use of renewable biomass such as plants and algae.

The amount of biomass on Earth is approximately 10 times the amount of energy we currently consume. Roughly half of this biomass grows in aquatic environments, and ocean-based biomass such as microalgae can produce oil without using up arable land and drinking water.

Microalgae can grow with light, water, carbon dioxide and a small amount of minerals, and their cells divide quickly, meaning that they can be harvested faster than land-based biomasses. Algae can also be harvested all year round, potentially offering a more stable energy supply.

Many species of algae are capable of producing large amounts of oil (lipids), but this is the first time that researchers have captured the metabolic changes occurring on a molecular level when lipids are produced in algae cells.

Focusing on marine microalgae, Professor Hasunuma's group found that Chlamydomonas sp. JSC4, a new species of green alga harvested from brackish water, combines a high growth rate with high levels of lipids. The research team developed an analysis method called "dynamic metabolic profiling" and used this to analyze JSC4 and discover how this species produces oil within its cells.

Professor Hasunuma's team incubated JSC4 with carbon dioxide as the sole carbon source. 4 days after the start of incubation, over 55% of cell weight consisted of carbohydrates (mainly starch). When saltwater comprised 1-2% of the incubation liquid, the team saw a decrease in carbohydrates and increase in oil, and 7 days after the start of incubation over 45% of cell weight had become oil.

JSC4 has a high cell growth rate, and the lipid production rate in the culture solution achieved a speed that greatly surpassed previous experiments. At the start of the cultivation period starch particles were observed in the cells, but in saltwater these particles vanish and numerous oil droplets are seen (figure 1).

Using dynamic metabolic profiling, the group found that the sugar biosynthesis pathway (activated when starch is produced) slows down, and the pathway is activated for synthesizing triacylglycerol, a constituent element of oil. In other words, the addition of seawater switched the pathway from starch to oil production. They also clarified that the activation of an enzyme that breaks down starch is increased in saltwater solution.

The discovery of this metabolic mechanism is not only an important biological finding, it could also be used to increase the production of biofuel by improving methods of algae cultivation. Based on these findings, the team will continue looking for ways to increase sustainable oil production by developing more efficient cultivation methods and through genetic engineering.

Research paper

BIO FUEL
Algal residue - an alternative carbon resource for pharmaceuticals and polyesters
Tokyo, Japan (SPX) Apr 13, 2017
Microalgae have received much attention in biomass production due to many strains having a high biomass productivity per unit time and per unit area. Algae produce high levels of oil as well as carbohydrates, occurring mainly in the form of starch. They can survive in unfavorable, nutrient deficient conditions, and can be propagated industrially without using farmland. Oil derived from alg ... read more

Related Links
Kobe University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Center for Sustainable Energy Partners with EnergySage to Offer an Online Multifamily Solar Marketplace

Mechanism behind the electric charges generated by photosynthesis

Swedish leading solar energy technology provider Midsummer offers complete BIPV metal roof systems

Adjusting solar panel angles a few times a year makes them more efficient

BIO FUEL
Saudi king's air force pilot son named US envoy

More oil production possible from Texas shale

Oil prices stage weak recovery in early Friday trading

Schlumberger posts yearly gain on North American oil recovery

BIO FUEL
Oklahoma to end tax credits for wind energy

Norwegian company envisions wind energy role for oil production

German power company examining new wind energy options.

Canada sees emerging role for wind energy

BIO FUEL
Making batteries from waste glass bottles

New battery coating could improve smart phones and electric vehicles

NYSERDA Announces $15.5 Million Available for Energy Storage Projects to Support the Electric Grid

Harnessing heat to power computers

BIO FUEL
Andra continues Areva contract to operate its Aube Surface Disposal Facility

The critical importance of Predictive Power when building NPPs

AREVA NP Signs Contract for Outage Services at Farley Nuclear Generating Station

AREVA and KAZATOMPROM sign a strategic agreement

BIO FUEL
Beyond China, carmakers seek new drivers of Asian growth

Automakers see promise in China car-sharing

Global carmakers converge on China as rare slowdown looms

China's quota threat charges up electric car market

BIO FUEL
Organic cover crop methods examined for weed control

Termite gut holds a secret to breaking down plant biomass

Can Prosecco help Italy unlock China wine market?

Ag scientists using electronics to control plant growth

BIO FUEL
Tweaking a molecule's structure can send it down a different path to crystallization

Apple touts greater use of recycled metal in gadgets

Lasers measure jet disintegration

Computers create recipe for two new magnetic materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.