Energy News  
BIO FUEL
UMD-Led researchers' wood-based technology creates electricity from heat
by Staff Writers
College Park MD (SPX) Mar 27, 2019

"We are the first to show that, this type of membrane, with its expansive arrays of aligned cellulose, can be used as a high-performance ion selective membrane by nanofluidics and molecular streaming and greatly extends the applications of sustainable cellulose into nanoionics," said Li summing up their paper.

A University of Maryland-led team of researchers has created a heat-to-electricity device that runs on ions and which could someday harness the body's heat to provide energy.

Led by UMD researchers Liangbing Hu, Robert Briber and Tian Li of the department of materials science, and Siddhartha Das of mechanical engineering, the team transformed a piece of wood into a flexible membrane that generates energy from the same type of electric current (ions) that the human body runs on.

This energy is generated using charged channel walls and other unique properties of the wood's natural nanostructures. With this new wood-based technology, they can use a small temperature differential to efficiently generate ionic voltage, as demonstrated in a paper published March 25 in the journal Nature Materials.

If you've ever been outside during a lightning storm, you've seen that generating charge between two very different temperatures is easy. But for small temperature differences, it is more difficult. However, the team says they have succesfully tackled this challenge. Hu said they now have "demonstrated their proof-of-concept device, to harvest low-grade heat using nanoionic behavior of processed wood nanostructures".

Trees grow channels that move water between the roots and the leaves. These are made up of fractally-smaller channels, and at the level of a single cell, channels just nanometers or less across. The team has harnessed these channels to regulate ions.

The researchers used basswood, which is a fast-growing tree with low environmental impact. They treated the wood and removed two components - lignin, that makes the wood brown and adds strength, and hemicellulose, which winds around the layers of cells binding them together.

This gives the remaining cellulose its signature flexibility. This process also converts the structure of the cellulose from type I to type II which is a key to enhancing ion conductivity.

A membrane, made of a thin slice of wood, was bordered by platinum electrodes, with sodium-based electrolyte infiltrated into the cellulose. The regulate the ion flow inside the tiny channels and generate electrical signal.

"The charged channel walls can establish an electrical field that appears on the nanofibers and thus help effectively regulate ion movement under a thermal gradient," said Tian Li, first author of the paper. .

Li - who was named as one of Forbes "30 Under 30" in Energy in 2018 - said that the sodium ions in the electrolyte insert into the aligned channels, which is made possible by the crystal structure conversion of cellulose and by dissociation of the surface functional groups.

"We are the first to show that, this type of membrane, with its expansive arrays of aligned cellulose, can be used as a high-performance ion selective membrane by nanofluidics and molecular streaming and greatly extends the applications of sustainable cellulose into nanoionics," said Li summing up their paper.

Research Report: "Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting"


Related Links
University of Maryland
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Plant scraps are the key ingredient in cheap, sustainable jet fuel
Washington DC (SPX) Mar 25, 2019
Scientists in China have developed a process for converting plant waste from agriculture and timber harvesting into high-density aviation fuel. Their research, published March 21 in the journal Joule, may help reduce CO2 emissions from airplanes and rockets. Cellulose, the main component in the biofuel, is a cheap, renewable, and highly abundant polymer that forms the cell walls of plants. While chain alkanes (such as branched octane, dodecane, and hexadecane) have previously been derived from cel ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Solar Steel will supply solar-powered irrigation based on TracSmarT+ single-axis tracker

Achieving 100 percent renewable energy production

New record: Over 16 percent efficiency for single-junction organic solar cells

Jamaica leads in Richard Branson-backed plan for a Caribbean climate revolution

BIO FUEL
Sri Lanka opens work on $3.85bn refinery near strategic port

Inter-American Development Bank leaves China in Venezuela row

Gas demand fuels profit surge at Chinese oil giants

Energy stealthily hitches ride in global trade

BIO FUEL
Measuring impact of drought on groundwater resources from space

Drought wipes popular Chilean lake from the map

Uncertain projections help to reveal the truth about future climate change

Hundreds of thousands join world youth climate demo

BIO FUEL
Energy monitor can find electrical failures before they happen

New research shows highest energy density all-solid-state batteries now possible

Speeding the development of fusion power to create unlimited energy on Earth

Advances point the way to smaller, safer batteries

BIO FUEL
Making xylitol and cellulose nanofibers from paper paste

Bright skies for plant-based jet fuels

Plant scraps are the key ingredient in cheap, sustainable jet fuel

Malaysia plants hope for palm oil's future in dwarf trees

BIO FUEL
EU should build autos in US to avoid tariffs: Trump

New wheel units could bring vehicle costs down

Lyft revs up for an IPO seeking to raise $2.4bn

Fisker relaunches Tesla rivalry with $40k electric car

BIO FUEL
Glyphosate under fire from San Francisco to Sri Lanka

Five things to know about Bayer and Monsanto

Monsanto's Roundup weedkiller contributed to US man's cancer: jury

Monsanto's Roundup weedkiller contributed to US man's cancer: jury

BIO FUEL
4D-printed materials can be stiff as wood or soft as sponge

At the limits of detectability

A decade on, smartphone-like software finally heads to space

Researchers turn liquid metal into a plasma









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.