Vampire algae killer's genetic diversity poses threat to biofuels by Staff Writers Los Alamos NM (SPX) Jul 24, 2019
New DNA analysis has revealed surprising genetic diversity in a bacterium that poses a persistent threat to the algae biofuels industry. With the evocative name Vampirovibrio chlorellavorus, the predatory pest sucks out the contents of the algae cells (thus the vampire reference) and reduces a productive, thriving, green algae pond to a vat of rotting sludge. "DNA sequences show what are likely different species, suggesting a much larger diversity in this family than we originally assumed," said Blake Hovde, a Los Alamos National Laboratory biologist. "That means the treatment for one algae pest might not work for another, which can be a big problem for large-scale algae cultivation in the future." The research team sequenced two strains of Vampirovibrio from the same pond. The two samples collected one year apart came from an outdoor algae cultivation system in the Sonoran Desert of Arizona run by University of Arizona collaborators Seth Steichen and Judith Brown. The team sequenced and analyzed the genomes to identify the genes involved in predation, infection and cell death of the valuable Chlorella algae that the bacterium targets. "Our genomic analyses identified several predicted genes that encode secreted proteins that are potentially involved in pathogenicity, and at least three apparently complete sets of virulence (Vir) genes," Hovde said. Those genes are characteristic of bacteria that carry out cell invasion. With Chlorella algae valued as a key source of harvestable biomass for biofuels and bioproducts, it is extremely useful to be able to enhance the fundamental understanding of interactions between a unique bacterial pathogen and its green algal host, Hovde noted. The results of this research have direct relevance to the success of large-scale commercial algal production projects underway to advance U.S. energy security (biofuels) and the production of aquaculture feedstocks and algal-based nutraceuticals. For future work, the team is following up with a project with the Joint Genome Institute to characterize six more pest genomes from the same family to see if the diversity of these organisms continues to expand, or if the researchers can start categorizing these pests into species groups.
Research Report: "Vampirovibrio chlorellavorus draft genome sequence, annotation, and preliminary characterization of pathogenicity determinants"
Research shows black plastics could create renewable energy Swansea UK (SPX) Jul 22, 2019 Research from Swansea University has found how plastics commonly found in food packaging can be recycled to create new materials like wires for electricity - and could help to reduce the amount of plastic waste in the future. While a small proportion of the hundreds of types of plastics can be recycled by conventional technology, researchers found that there are other things that can be done to reuse plastics after they've served their original purpose. The research, published in The Journal ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |