Yeast makes ethanol to prevent metabolic overload by Staff Writers Groningen, Netherlands (SPX) Jan 08, 2019
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades. Now, University of Groningen scientists think they have a solution: yeast cells produce ethanol as a 'safety valve', to prevent overload when their metabolic operation reaches a critical level. The implications of this new theory, which was published in Nature Metabolism on 7 January, could be far-reaching, as it also explains why cancer cells waste energy by producing lactate, known as the Warburg effect. Cells use nutrients like glucose to make new cells. But sometimes, some of these nutrients are wasted. For example, the yeast Saccharomyces cerevisiae, which is used to produce beer, breaks glucose down into ethanol rather than carbon dioxide. 'Metabolizing a six-carbon molecule to a two-carbon molecule, rather than to carbon dioxide, means part of the energy and matter stored in glucose is lost. It makes no sense', says Matthias Heinemann, Professor of Molecular Systems Biology at the University of Groningen.
Metabolism Heinemann's field of research is metabolism, the chemical reaction network that generates the building blocks for new cells. He hypothesized that there is an upper rate limit at which cells can operate their metabolism. With his PhD students Bastian Niebel and Simeon Leupold, he modelled the Gibbs energy dissipation in cells. This is the energy released by all chemical reactions taking place in a cell.
Something universal Heinemann and his team obtained similar results for the gut bacterium E. coli, with a plateau at a comparable level of Gibbs energy dissipation. Heinemann: 'Yeast and E. coli live in completely different environments, yet have about the same dissipation limit that is even at about the same value. This suggests that this limit is something universal.' The exact reason for this limit is still unknown, but the scientists have come up with a working hypothesis. 'Cellular metabolism has a maximum rate at which it can still operate.' When this is reached, the cells open a 'safety valve' and glucose is broken down to ethanol, acetate or lactate, leaving part of the energy unused.
Damage In the meantime, Heinemann believes that he has now solved the mystery of not just ethanol production in yeast, but also the Warburg effect in cancer cells. Almost a century ago, the late Nobel Laureate Otto Warburg observed that cancer cells have a high rate of glycolysis with lactate excretion. This waste of energy and matter is, Heinemann believes, the 'safety valve': 'There are some experiments going on with drugs that block lactate production as a way to treat cancer. The mechanism of these drugs could be to close the cells' safety valve.'
Entropy The discovery brings to mind a quote from Erwin Schrodinger's seminal work 'What is Life': 'The essential thing in metabolism is that the organism succeeds in freeing itself from all the entropy it cannot help producing while alive.' This statement should be extended, Heinemann says, with the following: 'However, there is an upper rate limit at which cells can free themselves from this entropy, and this limit governs how cells operate their metabolism.'
Research Report: An upper limit in Gibbs energy dissipation governs cellular metabolism
Tel Aviv researchers develop biodegradable plastic from seawater algae Washington (UPI) Jan 01, 2019 Researchers at the Tel Aviv University are working on a new biodegradable plastic made from microorganisms that feed on seawater algae. "Our new process produces 'plastic' from marine microorganisms that completely recycle into organic waste," said Alexander Golberg, of Tel Aviv University's Porter School of Environmental and Earth Sciences. Factories already "produce this type of bioplastic in commercial quantities, but they use plants that require agricultural land and fresh water," he ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |