Energy News  
BIO FUEL
Accelerated ammonia synthesis holds promise for conversion of renewable energy
by Staff Writers
Hiroshima, Japan (SPX) Feb 17, 2022

Schematic image of small-scale and distributed NH3 synthesis processes required to effectively utilize the fluctuated and localized renewable energy

Research by Japanese scientists at Hiroshima University reveals a way to make ammonia from its constituent molecules of nitrogen and hydrogen at ambient pressure.

The new study, published on Feb. 2 in the Journal of Physical Chemistry C, demonstrates a process with potential for use in renewable energy storage and transfer, which relies on a dispersed and fluctuating network of resources, such as sun and wind. "The ultimate goal of this work is to establish the small-scale NH3 production process to effectively utilize renewable energy" said study author and associate professor Hiroki Miyaoka from Hiroshima University's Natural Science Center for Basic Research and Development.

Ammonia (NH3) has recently been recognized as an outstanding energy carrier molecule. In 1918, German chemist Fritz Haber won the Nobel Prize for synthesis of ammonia from its elements, paving the way for ammonia's significant role in industrial fertilizers. However, use of ammonia in renewable energy applications has been limited by the processes available to synthesize it. The Haber-Bosch process, used in industrial production of ammonia, requires high temperature and pressure, conditions not typically available in renewable energy storage and transport infrastructure.

The NH3 synthesis process via chemical looping using lithium hydride (LiH) starts by combining LiH with N2 (molecular nitrogen) at ambient pressure and temperatures up to 500 C to yield a lithium imide product (LiNH2). The lithium imide then reacts with hydrogen gas (H2) to yield ammonia. The reaction time for ammonia synthesis from its constituent molecules in this process is more than 1000 minutes.

Its speed is limited by the clumping up (agglomeration) of the products of the reaction into large particles (more than 200 um) that don't have much surface area exposed to the hydrogen gas. For its practical application in distributed renewable energy, this prolonged reaction, requiring extreme conditions, is an impediment to ammonia production.

In the new study, researchers experimented with using lithium oxide (Li2O) as a molecular scaffold to synthesize ammonia under ambient pressure and temperatures below 400 C, conditions easy to mimic in nonindustrial settings.

They combined the reactant lithium hydride with lithium oxide and found that the lithium hydride prevented clumping, leaving smaller particles (less than 50 um) with more surface area exposed for chemical reactions. Using these non-agglomerated reactants and adding the gaseous hydrogen used in the final step of ammonia synthesis, they were able to produce ammonia more quickly; the reaction substantially sped up.

If ammonia can be produced quickly with relatively simple equipment under modest temperature and pressure conditions, it paves the way for smaller-scale ammonia production.

"The chemical looping process is useful to establish the small-scale NH3 synthesis process, which can be operated under lower pressure and temperature with higher conversion yield than the conventional catalytic process," said Miyaoka. The new process also obviates the need for expensive metal catalysts - such as elemental ruthenium (Ru) - used in industrial synthesis of ammonia.

The results of this study are relevant to renewable energy generation, which tends to be more distributed than industrial production. The process pioneered in the Hiroshima lab to produce ammonia efficiently under near-ambient conditions is the foundation for such applications.

"As a next step, the practical reaction processes to effectively control the above NH3 synthesis should be considered from chemical engineering points of view," Miyaoka said.

Research Report: "Improvement of Kinetics of Ammonia Synthesis at Ambient Pressure by the Chemical Looping Process of Lithium Hydride"


Related Links
Hiroshima University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
At bioenergy crossroads, should corn ethanol be left in the rearview mirror?
Madison WI (SPX) Feb 17, 2022
Transportation is responsible for a larger share of greenhouse gas emissions than any other sector of the U.S. economy, making biofuels a promising strategy to mitigate human-driven climate change. The U.S. Renewable Fuel Standard, created by 2007 legislation, mandates that such fuels partially replace petroleum-based ones. So far, however, the mandate has been nearly entirely fulfilled by corn ethanol, a fuel that may be worse for the climate than the gasoline it replaces. Fifteen years on, resea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Perovskite Solar Modules with a marble look

Increasing efficiency in two-terminal tandem solar cells

Solar-powered system offers a route to inexpensive desalination

Disorder-engineered inorganic nanocrystals set a new efficiency record for ultrathin solar cells

BIO FUEL
Spain, Denmark oppose EU green label for gas, nuclear

Iraqis queue for petrol in Mosul amid shortages

Easy aluminum nanoparticles for rapid, efficient hydrogen generation from water

India aims to be green hydrogen hub

BIO FUEL
Morocco announces $1 billion drought relief plan

Hunger crisis threatens half of Somalia's young children: UN

Stakes 'never been higher' in climate fight: IPCC head

Climate-boosted drought in western US worst in 1,200 years

BIO FUEL
Can the Salton Sea geothermal field prevent the coming lithium shortage?

Scientists discover new electrolyte for solid-state lithium-ion batteries

Quantifying California's lithium valley: can it power our EV revolution?

"Impossible" breakthrough brings fusion energy device closer to realization

BIO FUEL
At bioenergy crossroads, should corn ethanol be left in the rearview mirror?

Scientists use "green" solvent and natural pigment to produce bioplastic

Accelerated ammonia synthesis holds promise for conversion of renewable energy

Breakthrough in converting CO2 into fuel using solar energy

BIO FUEL
Paris kicks car traffic reduction plan down the road

Germany wants to keep fuel motor cars, but get rid of petrol

Lotus sports car group eyes stock market float

As costs jump, Sao Paulo Uber drivers set to launch rival app

BIO FUEL
Australian wine giant shakes off China sales collapse

Brazil Chamber passes controversial pesticide bill

Monitoring crop health across the Netherlands

Can eliminating meat production save Planet Earth

BIO FUEL
Extremely rare observation of 'tennis-like' vibrations of lead

Treasured trash: UK waste gets new lease of life

Bananas to fish scales: fashion's hunt for eco-materials

New Space Station experiments study flames in space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.