Aircraft can get higher and greener from doped fuels by Staff Writers Okanagan, Canada (SPX) Nov 03, 2021
The goal of creating a cleaner fuel for aircraft engines is creating a spark at UBC Okanagan. A team of researchers studying the burning rate of nanomaterials in liquid fuels believe they have created a recipe for a clean-burning, power-boosting aircraft fuel. The project is a collaboration between the School of Engineering's Combustion for Propulsion and Power Laboratory (CPPL) and its Nanomaterials and Polymer Nanocomposites Laboratory. Inside the CPPL, researchers watch a bright consistent flame as it dances over wires containing droplets of liquid fuel enriched with nanomaterials. The team is investigating the combustion characteristics of microscopic graphene oxide inside fuel. Their experiment measures the ignition delay, burn rate and speed by which the graphene particles and fuel separate into smaller particles. "Working with our industry partner, ZEN Graphene Solutions, we are assessing how the burn rate of this mixture can potentially improve its combustion properties," explains lead author and doctoral candidate Sepehr Mosadegh. Mosadegh and his supervisor, Assistant Professor Dr. Sina Kheirkhah, develop technology, tools and knowledge for next-generation energy and aerospace-related applications. In this case, they hope their results will lead to a future of cleaner and more powerful aircraft. "When it comes to fuel, we are always searching for a consistent response of the fuel within key parameters as they relate to how it ignites, burns and maintains strength," says Mosadegh. "Most people have a general understanding of the composition of gasoline and jet fuel, and that it is a mixture of many hydrocarbons. But they may not think about how combining these with nanomaterials and burning them can result in dramatically more powerful and cleaner engines." Using ultrafast and intensified cameras and microscopy analysis, the researchers were able to study the combustion rate of the doped fuel. They found that the addition of graphene oxide nanomaterials into ethanol improved the burn rate by about eight per cent. This improvement in combustion, the researchers explain, can help reduce the carbon footprint of aircraft. And at the same time, make aircraft more powerful. "The recipe for cooking the nanomaterials was developed by the co-author of this study Ahmad Ghaffarkhah. who works in our partner lab," says Dr. Kheirkhah. "We have published the results for doped ethanol, and we have promising results for other liquid fuels such as jet A and diesel." The addition of nanomaterials to liquid fuels alters the heat transfer and the fuel's evaporation rate, impacting the overall burning rate. "However, getting just the right mixture of nanomaterials and liquid fuel is key to improving combustion. Particularly in aircraft engines," Dr. Kheirkhah adds.
Research Report: "Graphene oxide doped ethanol droplet combustion: Ignition delay and contribution of atomization to burning rate"
First A319neo flight with 100 percent sustainable aviation fuel Toulouse, France (SPX) Nov 02, 2021 Airbus, Dassault Aviation, ONERA, the French Ministry of Transports and Safran have launched the first in-flight study of a single-aisle aircraft running on unblended sustainable aviation fuel (SAF). During the flight test over the Toulouse region on 28 October, one CFM LEAP-1A engine of an Airbus A319neo test aircraft operated on 100% SAF. Initial results from the ground and flight tests are expected in 2022. The unblended SAF is provided by Total Energies. It is made from Hydroprocessed Es ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |