Energy News  
BIO FUEL
Biofuel production technique could reduce cost, antibiotics use
by Staff Writers
Cambridge, UK (SPX) Aug 10, 2016


The ability to ferment low-cost feedstocks under nonsterile conditions may enable new classes of biochemicals and biofuels, such as microbial oil produced by the yeast Yarrowia lipolytica (shown here, oil in lipid bodies is stained green and cells walls stained blue). Image courtesy Novogy, Inc. For a larger version of this image please go here.

The cost and environmental impact of producing liquid biofuels and biochemicals as alternatives to petroleum-based products could be significantly reduced, thanks to a new metabolic engineering technique.

Liquid biofuels are increasingly used around the world, either as a direct "drop-in" replacement for gasoline, or as an additive that helps reduce carbon emissions.

The fuels and chemicals are often produced using microbes to convert sugars from corn, sugar cane, or cellulosic plant mass into products such as ethanol and other chemicals, by fermentation. However, this process can be expensive, and developers have struggled to cost-effectively ramp up production of advanced biofuels to large-scale manufacturing levels.

One particular problem facing producers is the contamination of fermentation vessels with other, unwanted microbes. These invaders can outcompete the producer microbes for nutrients, reducing yield and productivity.

Ethanol is known to be toxic to most microorganisms other than the yeast used to produce it, Saccharomyces cerevisiae, naturally preventing contamination of the fermentation process. However, this is not the case for the more advanced biofuels and biochemicals under development.

To kill off invading microbes, companies must instead use either steam sterilization, which requires fermentation vessels to be built from expensive stainless steels, or costly antibiotics. Exposing large numbers of bacteria to these drugs encourages the appearance of tolerant bacterial strains, which can contribute to the growing global problem of antibiotic resistance.

Now, in a paper published in the journal Science, researchers at MIT and the Cambridge startup Novogy describe a new technique that gives producer microbes the upper hand against unwanted invaders, eliminating the need for such expensive and potentially harmful sterilization methods.

The researchers engineered microbes, such as Escherichia coli, with the ability to extract nitrogen and phosphorous - two vital nutrients needed for growth - from unconventional sources that could be added to the fermentation vessels, according to Gregory Stephanopoulos, the Willard Henry Dow Professor of Chemical Engineering and Biotechnology at MIT, and Joe Shaw, senior director of research and development at Novogy, who led the research.

What's more, because the engineered strains only possess this advantage when they are fed these unconventional chemicals, the chances of them escaping and growing in an uncontrolled manner outside of the plant in a natural environment are extremely low.

"We created microbes that can utilize some xenobiotic compounds that contain nitrogen, such as melamine," Stephanopoulos says. Melamine is a xenobiotic, or artificial, chemical that contains 67 percent nitrogen by weight.

Conventional biofermentation refineries typically use ammonium to supply microbes with a source of nitrogen. But contaminating organisms, such as Lactobacilli, can also extract nitrogen from ammonium, allowing them to grow and compete with the producer microorganisms.

In contrast, these organisms do not have the genetic pathways needed to utilize melamine as a nitrogen source, says Stephanopoulos.

"They need that special pathway to be able to utilize melamine, and if they don't have it they cannot incorporate nitrogen, so they cannot grow," he says.

The researchers engineered E. coli with a synthetic six-step pathway that allows it to express enzymes needed to convert melamine to ammonia and carbon dioxide, in a strategy they have dubbed ROBUST (Robust Operation By Utilization of Substrate Technology).

When they experimented with a mixed culture of the engineered E. coli strain and a naturally occurring strain, they found the engineered type rapidly outcompeted the control, when fed on melamine.

They then investigated engineering the yeast Saccharomyces cerevisiae to express a gene that allowed it to convert the nitrile-containing chemical cyanamide into urea, from which it could obtain nitrogen.

The engineered strain was then able to grow with cyanamide as its only nitrogen source.

Finally, the researchers engineered both S. cerevisiae and the yeast Yarrowia lipolytica to use potassium phosphite as a source of phosphorous.

Like the engineered E. coli strain, both the engineered yeasts were able to outcompete naturally occurring strains when fed on these chemicals.

"So by engineering the strains to make them capable of utilizing these unconventional sources of phosphorous and nitrogen, we give them an advantage that allows them to outcompete any other microbes that may invade the fermenter without sterilization," Stephanopoulos says.

The microbes were tested successfully on a variety of biomass feedstocks, including corn mash, cellulosic hydrolysate, and sugar cane, where they demonstrated no loss of productivity when compared to naturally occurring strains.

The ROBUST strategy is now ready for industrial evaluation, Shaw says. The technique was developed with Novogy researchers, who have tested the engineered strains at laboratory scale and trials with 1,000-liter fermentation vessels, and with Felix Lam of the MIT Whitehead Institute for Biomedical Research, who led the cellulosic hydrosylate testing.

Novogy now hopes to use the technology in its own advanced biofuel and biochemical production, and is also interested in licensing it for use by other manufacturers, Shaw says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
The Thai village using poop to power homes
Pa Deng, Thailand (AFP) Aug 5, 2016
Nestled in a deep pocket of forest that lies off Thailand's electrical grid, villagers in Pa Deng have become early adopters and evangelists for an unusual alternative energy source: poop. After successfully lighting up their homes with solar panels and stoves fueled by cow dung, the villagers are now clean energy crusaders in a gas-guzzling country that overwhelmingly relies on fossil fuels ... read more


BIO FUEL
Installation of 2nd MW-scale sun2live solar power plant in Antigua has commenced

Material for polymer solar cells may lend itself to large-area processing

Tiny high-performance solar cells turn power generation sideways

ORNL optimizes formula for cadmium-tellurium solar cells

BIO FUEL
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

BIO FUEL
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

BIO FUEL
Making nail polish while powering fuel cells

Stanford-led team reveals nanoscale secrets of rechargeable batteries

Simulating complex catalysts key to making cheap, powerful fuel cells

Lithium-ion batteries: Capacity might be increased by 6 times

BIO FUEL
Low sales prices hit Czech power giant CEZ in H1

New MIT system can identify how much power is being used by each device in a household

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

BIO FUEL
New Zealand offers electric vehicle stimulus

US finds evidence of criminality in VW probe: report

China auto sales surge 23% in July: industry group

NREL assesses strategies needed for light-duty vehicle greenhouse gas reduction

BIO FUEL
Saving bees: France's thriving city hives offer token help

California grapes threatened by giant fire

Small molecules to help make SMARTER cereals

Pesticides used to help bees may actually harm them

BIO FUEL
Scientists invent new type of 'acoustic prism'

New algorithm for optimized stability of planar-rod objects

De-icing agent remains stable at more than a million atmospheres of pressure

Living Structural Materials Could Open New Horizons for Engineers and Architects









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.