Energy News  
BIO FUEL
Brazilian scientists reveal method of converting methane gas into liquid methanol
by Staff Writers
Sao Paulo, Brazil (SPX) Aug 03, 2022

file illustration only

A group of researchers has succeeded in converting methane into methanol using light and dispersed transition metals such as copper in a process known as photo-oxidation. According to an article reporting the study published in Chemical Communications, the reaction was the best obtained to date for conversion of methane gas into liquid fuel under ambient conditions of temperature and pressure (25 C and 1 bar respectively).

The term bar as a unit of pressure derives from the Greek word for weight (baros). One bar is equivalent to 100,000 Pascals (100 kPa), which is very close to the standard atmospheric pressure at sea level (101,325 Pa).

The results of the study are an important step in making natural gas available as an energy source for the production of alternative fuels to gasoline and diesel. Although natural gas is considered a fossil fuel, its conversion into methanol emits less carbon dioxide (CO2) than other liquid fuels in the same category.

In Brazil, methanol plays a key role in biodiesel production and in the chemical industry, which uses it to synthesize many products.

Furthermore, methane capture from the atmosphere is crucial to mitigate the adverse effects of climate change, as the gas has 25 times the potential of CO2, for example, to contribute to global warming.

"There's a great debate in the scientific community about the size of the planet's methane reserves. According to some estimates, they may have double the energy potential of all other fossil fuels combined. In the transition to renewables, we'll have to tap into all this methane at some point," Marcos da Silva, first author of the article, told Agencia FAPESP. Silva is a PhD candidate in the Physics Department of the Federal University of Sao Carlos (UFSCar).

The study was supported by FAPESP via two projects (20/14741-6 and 21/11162-8), by the Higher Research Council (CAPES, an agency of the Ministry of Education), and by the National Council for Scientific and Technological Development (CNPq, an arm of the Ministry of Science, Technology and Innovation).

According to Ivo Freitas Teixeira, a professor at UFSCar, Silva's thesis advisor and last author of the article, the photocatalyst used in the study was a key innovation. "Our group innovated significantly by oxidizing methane in a single stage," he said. "In the chemical industry, this conversion occurs via the production of hydrogen and CO2 in at least two stages and under very high temperature and pressure conditions. Our success in obtaining methanol under mild conditions, while also expending less energy, is a major step forward."

According to Teixeira, the results pave the way for future research into the use of solar energy for this conversion process, potentially reducing its environmental impact still further.

Photocatalysts
In the laboratory, the scientists synthesized crystalline carbon nitride in the form of polyheptazine imide (PHI), using non-noble or earth-abundant transition metals, especially copper, to produce active visible-light photocatalysts.

They then used the photocatalysts in methane oxidation reactions with hydrogen peroxide as an initiator. The copper-PHI catalyst generated a large volume of oxygenated liquid products, especially methanol (2,900 micromoles per gram of material, or umol.g-1 in four hours).

"We discovered the best catalyst and other conditions essential to the chemical reaction, such as using a large amount of water and only a small amount of hydrogen peroxide, which is an oxidizing agent," Teixeira said. "The next steps include understanding more about the active copper sites in the material and their role in the reaction. We also plan to use oxygen directly to produce hydrogen peroxide in the reaction itself. If successful, this should make the process even safer and economically viable."

Another point the group will continue to investigate relates to copper. "We work with dispersed copper. When we wrote the article, we didn't know whether we were dealing with isolated atoms or clusters. We now know they're clusters," he explained.

In the study, the scientists used pure methane, but in future they will extract the gas from renewables such as biomass.

According to the United Nations, methane has so far caused about 30% of global warming since the pre-industrial age. Methane emissions from human activity could be reduced by as much as 45% in the decade ahead, avoiding a rise of almost 0.3 C by 2045.

The strategy of converting methane into liquid fuel using a photocatalyst is new and not available commercially, but its potential in the near term is significant. "We began our research over four years ago. We now have far better results than those of Professor Hutchings and his group in 2017, which motivated our own research," Teixeira said, referring to a study published in the journal Science by researchers affiliated with universities in the United States and United Kingdom, and led by Graham Hutchings, a professor at Cardiff University in Wales.

(file illustration only)

Research Report:Selective methane photooxidation into methanol under mild conditions promoted by highly dispersed Cu atoms on crystalline carbon nitrides


Related Links
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
MSU researchers create method for breaking down plant materials for earth-friendly energy
East Lansing MI (SPX) Jul 14, 2022
With energy costs rising, and the rapidly emerging effects of burning fossil fuels on the global climate, the need has never been greater for researchers to find paths to products and fuels that are truly renewable. "We use 20 million barrels of oil a day in the U.S.; that's about a fifth of the world's usage," said Ned Jackson,a professor of organic chemistry in the College of Natural Science at Michigan State University. "All our liquid fuels and nearly all of our manufactured materials, from ga ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Rocket Lab to supply solar power for US Space Force missile warning satellites

Scientists fabricate high-performance large-area perovskite submodules for solar cells

China scales up distributed PV units, expands rural use

Desert sun, wind pack formidable punch

BIO FUEL
Scholz opens door to extend nuclear as Russia squeezes gas supply

BP profit triples to $9.3 bn on soaring energy prices

Iran slams 'destructive' US sanctions targeting oil trade

US sanctions target Iran petrochemical sales to

BIO FUEL
US Senate to begin debating Biden's climate and health bill

Scientists call for more research into 'climate endgame'

Alarm as Earth hits 'Overshoot Day' Thursday: NGOs

France struggles with drought over punishing summer of heat

BIO FUEL
Surrey's prototype battery only needs seconds of sunlight to keep smart wearables charged

A flexible device that harvests thermal energy to power wearable electronics

DNA inspired superconductor could transform technology

An affordable and sustainable alternative to lithium-ion batteries

BIO FUEL
Turning fish waste into quality carbon-based nanomaterial

Brazilian scientists reveal method of converting methane gas into liquid methanol

MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

BIO FUEL
Toyota upgrades forecast even as Q1 net profit slumps

California regulator accuses Tesla of false advertising

BMW profits drop as China lockdowns knock production

China lockdown, chip shortage hit Nissan profits

BIO FUEL
UK's Waitrose to scrap 'best before' date on fresh products

Yemen's ancient honey production a victim of war, climate change

Dutch farmer protests reap populist support

Dutch PM slams 'life-threatening' farmer protests

BIO FUEL
A better way to quantify radiation damage in materials

Magnetic quantum material helps probe next-gen information technologies

Engineers repurpose photography technique to make stretchy, color-changing films

Scientists have created optical fibers with unusual properties









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.