Breakthrough in converting CO2 into fuel using solar energy by Staff Writers Lund, Sweden (SPX) Feb 17, 2022
A research team led by Lund University in Sweden has shown how solar power can convert carbon dioxide into fuel, by using advanced materials and ultra-fast laser spectroscopy. The breakthrough could be an important piece of the puzzle in reducing the levels of greenhouse gases in the atmosphere in the future. The study is published in Nature Communications. The sunlight that hits Earth during one hour corresponds roughly to humanity's total energy consumption for an entire year. Our global carbon dioxide emissions are also increasing. Using the sun's energy to capture greenhouse gases and converting it into fuel or another useful chemical, is a research focus for many sz. However, there is still no satisfactory solution, but an international research team has now revealed a possible way forward. "The study uses a combination of materials that absorb sunlight and use its energy to convert carbon dioxide. With the help of ultra-fast laser spectroscopy, we have mapped exactly what happens in that process", says Tonu Pullerits, chemistry researcher at Lund University. The researchers have studied a porous organic material called COF - covalent organic framework. The material is known for absorbing sunlight very efficiently. By adding a so-called catalytic complex to COF, they succeeded, without any additional energy, in converting carbon dioxide to carbon monoxide. "The conversion to carbon monoxide requires two electrons. When we discovered that photons with blue light create long-lived electrons with high energy levels, we could simply charge COF with electrons and complete a reaction", says Kaibo Zheng, chemistry researcher at Lund University. How can these results be useful? Tonu Pullerits and Kaibo Zheng hope that in the future the discovery can be used to develop larger units that can be used on a global level to, with the help of the sun, absorb carbon dioxide from the atmosphere and convert it into fuel or chemicals. That could be one of many solutions to overcome the climate crisis we are facing. "We have completed two initial steps with two electrons. Before we can start thinking about a carbon dioxide converter, many more steps need to be taken, and probably even our first two must be refined. But we have identified a very promising direction to take", concludes Tonu Pullerits.
Research Report: "Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst"
Accelerated ammonia synthesis holds promise for conversion of renewable energy Hiroshima, Japan (SPX) Feb 17, 2022 Research by Japanese scientists at Hiroshima University reveals a way to make ammonia from its constituent molecules of nitrogen and hydrogen at ambient pressure. The new study, published on Feb. 2 in the Journal of Physical Chemistry C, demonstrates a process with potential for use in renewable energy storage and transfer, which relies on a dispersed and fluctuating network of resources, such as sun and wind. "The ultimate goal of this work is to establish the small-scale NH3 production process t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |