Energy News  
BIO FUEL
Can renewable energy really replace fossil fuels?
by Grace Niewijk for Purdue News
West Lafayette IN (SPX) May 13, 2020

A Purdue University scientist is studying the role of plants in renewable energy sources. Maureen McCann, a professor of biological sciences, is studying a wide range of plants from poplar trees to zinnias. Her lab has characterized hundreds of plant genes and their products in an effort to understand how they all interact and how they could be manipulated in advantageous ways. (Purdue University photo/Rebecca McElhoe)

As global temperatures and energy demand rise simultaneously, the search for sustainable fuel sources is more urgent than ever. But how can renewable energy possibly scale up to replace the vast quantities of oil and gas we consume?

Plant power is a significant piece of the answer, says Purdue scientist Maureen McCann. "Plants are the basis of the future bioeconomy," she says. "In my mind, building a sustainable economy means we stop digging carbon out of ground and begin to make use of one and a half billion tons of biomass available in the U.S. on an annual basis. That's the strategic carbon reserve that we need to exploit in order to displace oil."

McCann is a professor of biological sciences, former director of the Energy Center at Purdue's Discovery Park, and president-elect of the American Society of Plant Biologists. She has spent her academic career looking at plant cell walls, which contain some of the most complicated molecules in nature.

By studying a wide range of plants - from poplar trees to zinnias- her lab has characterized hundreds of plant genes and their products in an effort to understand how they all interact and how they could be manipulated in advantageous ways.

The ethanol industry uses enzymes to break starchy corn kernels down into glucose molecules, which, in turn, are fermented by microorganisms to produce usable fuel. Many researchers have been working on the possibility of getting more glucose by breaking down cellulose - the primary fibrous component of all plant cell walls - which is much more abundant than starch. However, McCann says their methods might be ignoring a valuable resource.

In addition to cellulose, cell walls contain many complex, poly-aromatic molecules called lignins. These compounds can get in the way of enzymes and catalysts that are trying to access cellulose and break it down into useful glucose. As a result, many labs have previously attempted to create plants that have more cellulose and fewer lignins in their cell walls.

But it turns out lignins are important for plant development and can be a valuable source of chemicals. As director of Purdue's Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), McCann collaborated with chemists and chemical engineers in maximizing utilization of available biomass, including lignins.

A nine-year grant from the U.S. Department of Energy funded C3Bio researchers' work toward using chemical catalysts to transform both cellulose and lignins into liquid hydrocarbons, which are more energy-dense than ethanol and fully compatible with engines and existing fuel infrastructure.

In light of lignins' usefulness, McCann and her colleagues are interested in alternative biofuel optimization strategies that don't involve reducing plants' lignin content. For example, if the researchers can modulate the strength of the "glue" between plant cells, they can make it easier for enzymes to access cellulose and also reduce the amount of energy needed for shredding the plant material.

Another approach involves genetically engineering living, growing plants to incorporate chemical catalysts into their own cell walls, which will help eventual breakdown be faster and more complete.

"In both cases, this work is a reflection of synthetic biology thinking," McCann says. "We don't simply take what nature gives us; we think of ways to improve the performance of the biomass using the entirety of the genetics toolkit."

McCann encourages others to think about "pathways of carbon."

"If we think of how plants grow, they're marvelous chemists. They're taking in carbon dioxide from the atmosphere and water through their roots, and converting those simple molecules into highly complex cell wall structures," she says.

"When we think about making use of plant material in a biorefinery, a key goal is to make sure that every carbon atom that the plants so carefully trapped as part of their bodies ends up in a useful target molecule - whether that's a liquid hydrocarbon or a component of some material with advanced properties."

As synthetic biologists, McCann and her lab members think holistically about optimizing crops for producing food, biofuel and useful materials such as specialized chemicals. Regardless of end purpose, she says, she keeps three dimensions in mind when thinking about optimization: increasing yield per acre, increasing the quality and value of each plant and increasing the area of land on which crops can be grown profitably.

The holistic approach is particularly important for ensuring that scientists and agricultural producers achieve these goals without compromising the global environment or local ecosystems.

"As a new bioeconomy emerges powered by the life sciences, plants are at the root of it in so many ways - both in terms of the energy they can provide and also the kinds of molecules that they can produce," McCann says.

For now, she acknowledges that ending economic dependence on fossil fuels is a work in progress. The transition to a renewable energy economy will require multiple levels of change over time. For example, even if we made the switch entirely to electric cars, we would likely still need hydrocarbon fuels to mine lithium for the batteries and to run machines with longer lifetimes than cars, such as airplanes and ocean-going vessels. Yet she maintains a positive outlook.

"Something that gives me great optimism is that we're going through a revolution in our ability to make new discoveries that lead to technologies that enable acceleration of the pace of discovery," she says.

"We're going to find new ways of converting energy from one form to another that we haven't even imagined. The capacity to make this substantial change from a fossil-based to a renewables-based economy is going to be there. We just need to drive it forward."


Related Links
Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Fossil fuel-free jet propulsion with air plasmas
Washington DC (SPX) May 06, 2020
Humans depend on fossil fuels as their primary energy source, especially in transportation. However, fossil fuels are both unsustainable and unsafe, serving as the largest source of greenhouse gas emissions and leading to adverse respiratory effects and devastation due to global warming. A team of researchers at the Institute of Technological Sciences at Wuhan University has demonstrated a prototype device that uses microwave air plasmas for jet propulsion. They describe the engine in the journal ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
How a solar chimney can boost fire safety

JA Solar new generation high-efficiency solar modules reach record 525W

CIT Leads $217 Million Financing for Hillcrest Solar Project in Ohio

Moisture-sucking gels give solar panels the chills

BIO FUEL
Is There Life After the Oil Apocalypse?

Nigeria Faces 'Double Whammy' Challenge of COVID-19 and Plummeting Oil Revenue

Eleven captured for failed maritime 'invasion' of Venezuela

US oil producers struggle to stay afloat in sea of excess

BIO FUEL
Pandemic taking toll on weather and climate watch: UN

April 2020 tied for warmest on record: EU climate service

'Catastrophic' drought hits Czech Republic: minister

Fight climate change like coronavirus: UN

BIO FUEL
Supercapacitor promises storage, high power and fast charging

New Princeton study takes superconductivity to the edge

KIST develops high-performance ceramic fuel cell that operates on butane gas

Researchers tackle a new opportunity to develop high-energy batteries

BIO FUEL
Solve invasive seaweed problem by turning it into biofuels and fertilisers

Fossil fuel-free jet propulsion with air plasmas

How new materials increase the efficiency of direct ethanol fuel cells

Water is key in catalytic conversion of methane to methanol

BIO FUEL
Uber losses widen but appetite grows for Eats

How we might recharge an electric car as it drives

Uber cuts 3,700 jobs amid pandemic slump

California sues Uber and Lyft for calling drivers 'contractors'

BIO FUEL
Vegan rivals smell blood as virus hits meat supply

Rain brings optimism for drought-plagued Aussie farmers

Intensive farming makes epidemics more likely

Technique could enable cheaper fertilizer production

BIO FUEL
Study suggests polymer composite could serve as lighter, non-toxic radiation shielding

Gaming becomes king of entertainment in pandemic lockdown

'Assassin's Creed' stars as Xbox teases new games

China tests 3D printing in space for first time









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.