Energy News  
BIO FUEL
Can sunlight convert emissions into useful materials?
by Staff Writers
Los Angeles CA (SPX) Sep 02, 2020

stock image only

Shaama Sharada calls carbon dioxide - the worst offender of global warming - a very stable, "very happy molecule."

She aims to change that.

Recently published in the Journal of Physical Chemistry A, Sharada and a team of researchers at the USC Viterbi School of Engineering seek to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Typically, this process requires a tremendous amount of energy. However, in the first computational study of its kind, Sharada and her team enlisted a more sustainable ally: the sun.

Specifically, they demonstrated that ultraviolet (UV) light could be very effective in exciting an organic molecule, oligophenylene. Upon exposure to UV, oligophenylene becomes a negatively charged "anion," readily transferring electrons to the nearest molecule, such as CO2 - thereby making the CO2 reactive and able to be reduced and converted into things like plastics, drugs or even furniture.

"CO2 is notoriously hard to reduce, which is why it lives for decades in the atmosphere," Sharada said. "But this negatively charged anion is capable of reducing even something as stable as CO2, which is why it's promising and why we are studying it."

The rapidly growing concentration of carbon dioxide in the earth's atmosphere is one of the most urgent issues humanity must address to avoid a climate catastrophe.

Since the start of the industrial age, humans have increased atmospheric CO2 by 45%, through the burning of fossil fuels and other emissions. As a result, average global temperatures are now two degrees Celsius warmer than the pre-industrial era. Thanks to greenhouse gases like CO2, the heat from the sun is remaining trapped in our atmosphere, warming our planet.

The research team from the Mork Family Department of Chemical Engineering and Materials Science was led by third year Ph.D. student Kareesa Kron, supervised by Sharada, a WISE Gabilan Assistant Professor. The work was co-authored by Samantha J. Gomez from Francisco Bravo Medical Magnet High School, who has been part of the USC Young Researchers Program, allowing high school students from underrepresented areas to take part in STEM research.

Many research teams are looking at methods to convert CO2 that has been captured from emissions into fuels or carbon-based feedstocks for consumer products ranging from pharmaceuticals to polymers.

The process traditionally uses either heat or electricity along with a catalyst to speed up CO2 conversion into products. However, many of these methods are often energy intensive, which is not ideal for a process aiming to reduce environmental impacts. Using sunlight instead to excite the catalyst molecule is attractive because it is energy efficient and sustainable.

"Most other ways to do this involve using metal-based chemicals, and those metals are rare earth metals," said Sharada. "They can be expensive, they are hard to find and they can potentially be toxic."

Sharada said the alternative is to use carbon-based organic catalysts for carrying out this light-assisted conversion. However, this method presents challenges of its own, which the research team aims to address. The team uses quantum chemistry simulations to understand how electrons move between the catalyst and CO2 to identify the most viable catalysts for this reaction.

Sharada said the work was the first computational study of its kind, in that researchers had not previously examined the underlying mechanism of moving an electron from an organic molecule like oligophenylene to CO2. The team found that they can carry out systematic modifications to the oligophenylene catalyst, by adding groups of atoms that impart specific properties when bonded to molecules, that tend to push electrons towards the center of the catalyst, to speed up the reaction.

Despite the challenges, Sharada is excited about the opportunities for her team.

"One of those challenges is that, yes, they can harness radiation, but very little of it is in the visible region, where you can shine light on it in order for the reaction to occur," said Sharada. "Typically, you need a UV lamp to make it happen."

Sharada said that the team is now exploring catalyst design strategies that not only lead to high reaction rates but also allow for the molecule to be excited by visible light, using both quantum chemistry and genetic algorithms.

The research paper marks high school student Gomez's first co-authored publication in a prestigious peer-reviewed journal.

Gomez was a senior at the Bravo Medical Magnet school at the time she took part in the USC Young Researchers Program over the summer, working in Sharada's lab. She was directly mentored and trained in theory and simulations by Kron. Sharada said Gomez's contributions were so impressive that the team agreed she deserved an authorship on the paper.

Gomez said that she enjoyed the opportunity to work on important research contributing to environmental sustainability. She said her role involved conducting computational research, calculating which structures were able to significantly reduce CO2.

"Traditionally we are shown that research comes from labs where you have to wear lab coats and work with hazardous chemicals," Gomez said. "I enjoyed that every day I was always learning new things about research that I didn't know could be done simply through computer programs."

"The first-hand experience that I gained was simply the best that I could've asked for, since it allowed me to explore my interest in the chemical engineering field and see how there are many ways that life-saving research can be achieved," Gomez said.

Research paper


Related Links
University Of Southern California
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
New device turns sunlight, CO2, water into carbon-neutral fuel
Washington DC (UPI) Aug 24, 2020
Engineers at the University of Cambridge have developed a device that converts sunlight, carbon dioxide and water into a carbon-neutral fuel, without the need for electrical components. The technology could pave the way for artificial photosynthesis, replicating plants' ability to convert sunlight into energy. The new device utilizes what's called a photocatalyst sheet, which harnesses the power of the sun to convert CO2 and H2O into O2 and formic acid, a storable fuel. According to a ne ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Raptor Maps Raises $5M for its Solar Lifecycle Management Software

Tandem solar cell world record: New branch in the NREL chart

NREL six-junction solar cell sets two world records for efficiency

3D-printed system speeds up solar cell testing from hours to minutes

BIO FUEL
Libya unity government names new defence officials after protests

Sudan government and rebel groups agree peace deal

Greece, Cyprus, Italy, France to hold military exercises from Wednesday

Turkey's maritime doctrine author has dire warning for France

BIO FUEL
Fossil leaves prove elevated CO2 triggered greening 23M years ago

China teenage climate warrior fights a lonely battle

Lockdown emissions fall will have 'no effect' on climate

Scientists say COVID-19 recovery plans should include climate change

BIO FUEL
The factory of the future, batteries not included

CU scientists create batteries that could make it easier to explore Mars

Russian chemists proposed a new design of flow batteries

Red bricks can be charged, store energy

BIO FUEL
Researchers find that bacteria can produce common component in plastic

New device turns sunlight, CO2, water into carbon-neutral fuel

AFRL awards $1M to first Grand Challenge For Biotechnology

Beyond batteries: Scientists build methanol-powered beetle bot

BIO FUEL
Uber-Lyft back off plans to suspend California ride services

Uber-Lyft to stop California services absent reprieve

Uber chief: law could idle operations in California

Uber calls for new deal for 'gig economy' workers

BIO FUEL
Australia blocks Chinese firm's bid to buy major dairy company

Chile slaps record fine on Norwegian salmon producer

Colombia close to resuming aerial spraying of coca crops

China's rat, cobra farmers feel coronavirus pain

BIO FUEL
NOAA selects Orbit Logic for enterprise scheduling

New ground station brings laser communications closer to reality

Nellis AFB, Nev., opens pilots' virtual training center

'FreeFortnite' tournament taunts Apple amid legal battle









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.